
fr
om

 P
yt

ho
n

in
 e

as
y

st
ep

s

Programming errors are
often called “bugs” and
the process of tracking
them down is often
called “debugging”.

Correcting errors
In Python programming there are three types of error that can
occur. It is useful to recognize the different error types so they can
be corrected more easily:

•	 Syntax Error – occurs when the interpreter encounters code
that does not conform to the Python language rules. For
example, a missing quote mark around a string. The interpreter
halts and reports the error without executing the program.

•	 Runtime Error – occurs during execution of the program, at
the time when the program runs. For example, when a variable
name is later mis-typed so the variable cannot be recognized.
The interpreter runs the program but halts at the error and
reports the nature of the error as an “Exception”.

•	 Semantic Error – occurs when the program performs
unexpectedly. For example, when order precedence has not
been specified in an expression. The interpreter runs the
program and does not report an error.

Correcting syntax and runtime errors is fairly straightforward, as
the interpreter reports where the error occurred or the nature of
the error type, but semantic errors require code examination.

l1	 Launch a plain text editor then add a statement to output
a string that omits a closing quote mark
print(‘Python in easy steps)

l2	 Save the file in your scripts directory then open a
Command Prompt window there and run this program –
to see the interpreter report the syntax error and indicate
the position in the code where the error occurs

Typically, the syntax error
indicator points to the
next character after an
omission in the code.

fr
om

 P
yt

ho
n

in
 e

as
y

st
ep

s

…cont’d

l3	 Insert a quote mark before the closing parenthesis to
terminate the string, then save the file and run the
program again – to see the error has been corrected

l4	 Next, begin a new program by initializing a variable, then
try to output its value with an incorrect variable name –
to see the interpreter report a runtime error
title = ‘Python in easy steps’
print(titel)

l5	 Amend the variable name to match that in the variable
declaration, then save the file and run the program again
– to see the error has been corrected

l6	 Now, begin a new program by initializing a variable, then
try to output an expression using its value without explicit
precedence – to see a possibly unexpected result of 28
num = 3
print(num * 8 + 4)

l7	 Add parentheses to group the expression as 3 * (8 + 4),
then save the file and run the program again – to see the
expected result of 36, correcting the semantic error

