from Bash in easy steps

gew?*®
Always enclose phrases
you want to use literally
within single quotes to
avoid misinterpretation.

LN

“ox‘t'\P
The newline \n and tab
\t sequences can be
included in phrases if
preceded by a backslash
— for example,
echo \nNEWLINE \\tTAB.

Quoting Phrases

'The metacharacters that have special meaning to the Bash shell
can be used literally, without applying their special meaning, by
enclosing them within a pair of * * single-quote characters to
form a quoted phrase. For example, to include the name of a shell
variable in a phrase without interpreting its value:

0 At a prompt, type echo Processed By: $SHELL then hit
Return to see the shell variable get interpreted in output

e Now, enter echo ‘Processed By: $SHELL to see the shell
variable printed literally in output

G mike@win-pc: ~

Alternatively, the significance of the leading $ metacharacter of a
shell variable can be ignored if preceded by a \ backslash character
to “escape” it from recognition as having special meaning:

9 At a prompt, type echo Processed By: $SHELL then hit
Return to see the shell variable get interpreted in output

o Now, enter echo Processed By: \$SHELL to see the shell
variable printed literally in output

T mike@win-pc: ~

...cont'd

It is necessary to precede a single-quote character with a \
backslash when it is used as an apostrophe, so it is not interpreted
as an incomplete quoted phrase. An incomplete quoted phrase or
a \ backslash at the end of a line allows a command to continue
on the next line as they escape the newline when you hit Return:

apostrophe appear in output

9 At a prompt, enter echo It\'s escaped to see the < i

“ox‘t'\P
e Next, type echo Continued \ then hit Return, type text —
written along \ then hit Return, and type several lines Notice that the shell

prompt string changes
to a > to indicate it is
awaiting further input.

then hit Return to see the continued phrase in output

T mike@win-pc: ~

Double-quote marks “ * are regarded as weak by the Bash shell
as they do allow the interpretation of shell variables they enclose.
They can, however, be useful to print out a quoted string if the
entire string (and its double quotes) are enclosed in single quotes:

o Type echo “Interpreted With $SHELL” then hit Return to
see the shell variable get interpreted in unquoted output

e Now, enter echo ‘“Interpreted With $SHELL"" to see the
shell variable printed literally in quoted output Dot
‘o\‘g

C—

4 mike@win-pc: ~ You could altematively
reted With $SHELL" escape double-quote
characters with a
backslash to print them
in output — for example,
echo \"With \$SHELL\".

rpreted With $SHELL™®

from Bash in easy steps

