
fr
om

 C
 P

ro
gr

am
m

in
g

in
 e

as
y

st
ep

s

Understanding compilation
In producing an executable file from an original C source code
file, the compilation process actually undergoes four separate
stages, which each generate a new file:

•	 Preprocessing – The preprocessor substitutes all preprocessor
directives in the original source code .c file with actual library
code that implements those directives. For instance, library
code is substituted for #include directives. The generated file
containing the substitutions is in text format and typically has
a .i file extension.

•	 Translating – The compiler translates the high-level
instructions in the .i file into low-level Assembly language
instructions. The generated file containing the translation is in
text format and typically has a .s file extension.

•	 Assembling – The assembler converts the Assembly language
text instructions in the .s file into machine code. The generated
object file containing the conversion is in binary format and
typically has a .o file extension.

•	 Linking – The linker combines one or more binary object .o
files into a single executable file. The generated file is in binary
format and typically has a .exe file extension.

Strictly speaking, “compilation” describes the first three stages
above, which operate on a single source code text file and
ultimately generate a single binary object file. Where the program
source code contains syntax errors, such as a missing semi-colon
statement terminator or a missing parenthesis, they will be
reported by the compiler and compilation will fail.

The linker, on the other hand, can operate on multiple object files
and ultimately generates a single executable file. This allows the
creation of large programs from modular object files that may
each contain reusable functions. Where the linker finds a function
of the same name defined in multiple object files it will report an
error and the executable file will not be created.

Source Code (.c)

Preprocessor

Assembly Code (.s)

Object Code (.o)

Compiler

Assembler

Linker

Executable (.exe)

Substitutions (.i)

fr
om

 C
 P

ro
gr

am
m

in
g

in
 e

as
y

st
ep

s

…cont’d

Normally, the temporary files created during the intermediary
stages of the compilation process are automatically deleted, but
they can be retained for inspection by including a -save-temps
option in the compiler command:

l1	 At a command prompt in the MyPrograms directory, type
gcc hello.c -save-temps -o hello.exe then hit Return to
recompile the program and save the temporary files

l2	 Open the hello.i file in a plain text editor such as
Windows’ Notepad, to see your source code at the very
end of the file preceded by substituted stdio.h library code

l3	 Now, open the hello.s file in a plain text editor to see the
translation into low-level Assembly code and note how
unfriendly that appears in contrast to the C code version

Programs tediously
written in Assembly
language can run faster
than those written in C
but are more difficult to
develop and maintain.
For traditional computer
programming, C is
almost always the first
choice.

