
fr
om

 C
+

+
 P

ro
gr

am
m

in
g

in
 e

as
y

st
ep

s

Array numbering starts
at zero – so the final
element in an array of six
elements is number five,
not number six.

Employing variable arrays
An array is a variable that can store multiple items of data –
unlike a regular variable, which can only store one piece of data.
The pieces of data are stored sequentially in array “elements” that
are numbered, starting at zero. So, the first value is stored in
element zero, the second value is stored in element one, and so on.

An array is declared in the same way as other variables, but
additionally the size of the array must also be specified in the
declaration, in square brackets following the array name. For
example, the syntax to declare an array named “nums” to store six
integer numbers looks like this:

int nums[6] ;

Optionally, an array can be initialized when it is declared by
assigning values to each element as a comma-separated list
enclosed by curly brackets (braces). For example:

int nums[6] = { 0, 1, 2, 3, 4, 5 } ;

An individual element can be referenced using the array name
followed by square brackets containing the element number. This
means that nums[1] references the second element in the example
above – not the first element, as element numbering starts at zero.

Arrays can be created for any C++ data type, but each element
may only contain data of the same data type. An array of
characters can be used to store a string of text if the final element
contains the special \0 null character. For example:

char name[5] = { ‘m’, ‘i’, ‘k’, ‘e’, ‘\0’ } ;

The entire string to be referenced just by the array name. This is
the principle means of working with strings in the C language,
but the C++ string class, introduced in chapter four, is far simpler.

Collectively, the elements of an array are known as an “index”.
Arrays can have more than one index – to represent multiple
dimensions, rather than the single dimension of a regular array.
Multi-dimensional arrays of three indices and more are
uncommon, but two-dimensional arrays are useful to store
grid-based information, such as coordinates. For example:

int coords[2] [3] = { { 1, 2, 3 } , { 4, 5, 6 } } ;

[0]

[1]

[0]

[2][1]

1

654

32

fr
om

 C
+

+
 P

ro
gr

am
m

in
g

in
 e

as
y

st
ep

s

Where possible, variable
names should not
be abbreviations –
abbreviated names are
only used in this book’s
examples due to space
limitations.

The loop structures,
introduced in Chapter
Three, are often used to
iterate array elements.

…cont’d

arrays.cpp

l1	 Start a new program by specifying the C++ library classes
to include, and a namespace prefix to use
#include <iostream>
using namespace std ;

l2	 Add a main function containing a final return statement
int main()
{
 // Program code goes here.
 return 0 ;
}

l3	 In the main function, insert statements to declare and
initialize three variable arrays
// Declared then initialized.
float nums[3] ;
nums[0] = 1.5 ; nums[1] = 2.75 ; nums[2] = 3.25 ;

// Declared and initialized.
char name[5] = { ‘m’, ‘i’, ‘k’, ‘e’, ‘\0’ } ;
int coords[2] [3] = { { 1, 2, 3 } , { 4, 5, 6 } } ;
}

l4	 Now, insert statements to output specific element values
cout << “nums[0]: ” << nums[0] << endl ;
cout << “nums[1]: ” << nums[1] << endl ;
cout << “nums[2]: ” << nums[2] << endl ;
cout << “name[0]: ” << name[0] << endl ;
cout << “Text string: ” << name << endl ;
cout << “coords[0][2]: ” << coords[0][2] << endl ;
cout << “coords[1][2]: ” << coords[1][2] << endl ;

l5	 Save, compile, and run the program to see the output

