
fr
om

 C
+

+
 P

ro
gr

am
m

in
g

in
 e

as
y

st
ep

s

The typedef keyword
simply creates a
nickname for a structure.

Declaring constants
Data that will not change during the execution of a program
should be stored in a constant container, rather than in a variable.
This better enables the compiler to check the code for errors – if
the program attempts to change the value stored in a constant, the
compiler will report an error and the compilation will fail.

A constant can be created for any data type by prefixing a
variable declaration with the const keyword, followed by a space.
Typically, constant names appear in uppercase to distinguish
them from (lowercase) variable names. Unlike variables, constants
must always be initialized in the declaration. For example, the
declaration of a constant for the math pi value looks like this:

const double PI = 3.1415926536 ;

The enum keyword provides a handy way to create a sequence of
integer constants in a concise manner. Optionally, the declaration
can include a name for the sequence after the enum keyword. The
constant names follow as a comma-separated list within braces.
For example, this declaration creates a sequence of constants:

enum suit { CLUBS , DIAMONDS , HEARTS , SPADES } ;

Each of the constants will, by default, have a value one greater
than the preceding constant in the list. Unless specified, the first
constant will have a value of zero, the next a value of one, and
so on. A constant can be assigned any integer value, but the next
constant in the list will always increment it by one.

It is occasionally convenient to define a list of enumerated
constants as a “custom data type” – by using the typedef keyword.
This can begin the enum declaration, and a chosen type name can
be added at the end of the declaration. For example, this typedef
statement creates a custom data type named “charge”:

typedef enum { NEGATIVE , POSITIVE } charge ;

Variables can then be created of the custom data type in the usual
way, which may legally be assigned any of the listed constants.
Essentially, these variables act just like an int variable – as they
store the numerical integer value the assigned constant represents.
For example, with the example above, assigning a POSITIVE
constant to a charge variable actually assigns an integer of one.

fr
om

 C
+

+
 P

ro
gr

am
m

in
g

in
 e

as
y

st
ep

s

In the PI declaration, the
* character is the C++
multiplication operator,
and the backslash
character in \” escapes
the quote mark from
recognition – so the
string does not get
terminated prematurely.

…cont’d

l1	 Start a new program by specifying the C++ library classes
to include, and a namespace prefix to use
#include <iostream>
using namespace std ;

l2	 Add a main function containing a final return statement
int main()
{
 // Program code goes here.
 return 0 ;
}

l3	 In the main function, insert statements to declare a
constant, and output using the constant value
const double PI = 3.1415926536 ;
cout << “6\” circle circumference: “ << (PI * 6) << endl ;

l4	 Next, insert statements to declare an enumerated list of
constants, and output using some of those constant values
enum
{ RED=1, YELLOW, GREEN, BROWN, BLUE, PINK, BLACK } ;
cout << “I shot a red worth: ” << RED << endl ;
cout << “Then a blue worth: ” << BLUE << endl ;
cout << “Total scored: ” << (RED + BLUE) << endl ;

l5	 Now, insert statements to declare a custom data type and
output its assigned values
typedef enum { NEGATIVE , POSITIVE } charge ;
charge neutral = NEGATIVE , live = POSITIVE ;
cout << “Neutral wire: ” << neutral << endl ;
cout << “Live wire: ” << live << endl ;

l6	 Save, compile, and run the program to see the output

constant.cpp

