
fr
om

 C
#

 P
ro

gr
am

m
in

g
in

 e
as

y
st

ep
s,

 2
nd

 e
di

ti
on

Introducing C#
The introduction of the Microsoft .NET framework at the
Professional Developers Conference in July 2000 also saw
Microsoft introduce a new programming language called C#
(pronounced “see-sharp”). The name was inspired by musical
notation where a # sharp symbol indicates that a written note
should be a semitone higher in pitch. This notion is similar to the
naming of the C++ programming language where the ++ symbol
indicates that a written value should be incremented by 1.

•	 C# is designed to be a simple, modern, general-purpose,
object-oriented programming language, borrowing key
concepts from several other languages – most notably the
Java programming language. Consequently, everything in C#
is a class “object” with “properties” and “methods” that can be
employed by a program.

•	 C# is an elegant and “type-safe” programming language that
enables developers to build a variety of secure and robust
applications. You can use C# to create Windows client
applications, XML web services, distributed components,
client-server applications, database applications, and much,
much more.

•	 C# is specifically designed to utilize the proven functionality
built into the .NET framework “class libraries”. Windows
applications written in C# therefore require the Microsoft
.NET framework to be installed on the computer running
the application – typically, an integral component of the
system.

The Microsoft .NET Framework
Each version of the Microsoft .NET framework includes a
unified set of class libraries and a virtual execution system called
the Common Language Runtime (CLR). The CLR allows the C#
language and the class libraries to work together seamlessly.

To create an executable program, source code written in the C#
language is compiled by the C# Compiler into Intermediate
Language (IL) code. This is stored on disk, together with other
program resources such as images, in an “assembly”. Typically, the
assembly will have a file extension of .exe or .dll. Each assembly
contains a “manifest” that provides information about that
program’s security requirements.

If you don’t achieve the
result illustrated in any
example, simply compare
your code to that in the
original example files
you have downloaded to
discover where you went
wrong.

The source code of
all examples in this
book is available for
free download at
www.ineasysteps.
com/resource-center/
downloads

fr
om

 C
#

 P
ro

gr
am

m
in

g
in

 e
as

y
st

ep
s,

 2
nd

 e
di

ti
on

Just-In-Time compilation
is also known as
“Dynamic Translation”.

Just-In-Time compilation
occurs during program
execution, rather than
prior to its execution.

...cont’d

Operating System Execution

 Common Language Runtime (CLR)
Security/JIT Compiler/Garbage Collection

Microsoft .NET Framework

C# Compiler

Assembly (IL Code & Resources)

C# Source File(s) Resources &
 References

Visual Studio C# Project

When a C# program is executed, the assembly is loaded into
the Common Language Runtime (CLR), and the security
requirements specified in its assembly manifest are examined.
When the security requirements are satisfied, the CLR
performs Just-In-Time (JIT) compilation of the IL code into
native machine instructions. The CLR then performs “garbage
collection”, exception handling, and resource management tasks
before calling upon the operating system to execute the program:

As language interoperability is a key feature of the Microsoft
.NET framework, the IL code generated by the C# Compiler
can interact with code generated by the .NET versions of other
languages such as Visual Basic and Visual C++. The examples
throughout this book demonstrate Visual C# program code.

