
fr
om

 C
#

 P
ro

gr
am

m
in

g
in

 e
as

y
st

ep
s,

 2
nd

 e
di

ti
on

It is recommended that
you comment your
code to make it readily
understood by others or
when revisiting your own
code later.

The WriteLine()
method automatically
adds a newline after its
output.

As with all programming languages, C# has a number of syntax
rules that must be precisely followed to ensure the code is
correctly formatted for the C# compiler to clearly understand:

•	 Case-sensitivity – C# is a case-sensitive language, which
means that uppercase “A” and lowercase “a” are regarded as
totally different items.

•	 Termination – All statements in C# language must be
terminated by a ; semicolon character, just as all sentences in
English language must be terminated by a . period character.
For example: Console.WriteLine(“Hello World!”) ;

•	 Single-line comments – Brief comments on a single line
must begin with // two forward slash characters.
For example: // Output the traditional greeting.

•	 Block comments – Extended comments on multiple lines
must begin with /* forward slash and asterisk characters, and
must end with the reverse */ asterisk and forward slash.
For example:	
/*
	 C# Programming in easy steps.
 Getting started with the traditional greeting.
*/

•	 White space – Spaces, tabs, newline characters, and
comments are ignored by the C# compiler, so can be used
extensively to organize code without performance penalty.

•	 Escape sequences – The C# compiler recognizes \n as a
newline character and \t as a tab character, so these can be
used to format output.
For example: Console.WriteLine(“Line One \n Line Two”) ;

•	 Naming conventions – A programmer-defined identifier
name in C# code may begin with an _ underscore character
or a letter in uppercase or lowercase. The name may also
contain an underscore, letters, and numerals.
For example: class MyNo1_Class

•	 Keywords – The C# language has a number of keywords
(listed opposite) that have special syntactic meaning and may
not be used to name programmer-defined items in code.

Following the rules

fr
om

 C
#

 P
ro

gr
am

m
in

g
in

 e
as

y
st

ep
s,

 2
nd

 e
di

ti
on

...cont’d

C# Reserved Keywords

abstract as base bool

break byte case catch

char checked class const

continue decimal default delegate

do double else enum

event explicit extern false

finally fixed float for

foreach goto if implicit

in int interface internal

is lock long namespace

new null object operator

out override params private

protected public readonly ref

return sbyte sealed short

sizeof stackalloc static string

struct switch this throw

true try typeof uint

ulong unchecked unsafe ushort

using virtual void volatile

while

C# Contextual Keywords

add alias ascending async

await descending dynamic from

get global group into

join let orderby partial

remove select set value

var where yield

If you absolutely must
use a keyword to
name a programmer-
defined element, it may
be prefixed by an @
character to distinguish it
from the keyword – but
this is best avoided.

Contextual keywords
have special significance
in certain code. For
example, get and set in
method declarations.

