
fr
om

 R
 f

or
 D

at
a

A
na

ly
si

s
in

 e
as

y
st

ep
s

The R interpreter also
ignores tabs and spaces
(whitespace) in R Script
code, so you can safely
space your code to your
preferred coding style.

Adding comments
When programming, in any language, it is good practice to add
comments to program code to explain each particular section.
This makes the code more easily understood by others, and by
yourself when revisiting a piece of code after a period of absence.

In R Script programming, comments can be added by beginning
a line with the # hash character. All subsequent characters on
that line will be completely ignored by the R interpreter. Unlike
other programming languages there is no support for multi-line
comments between /* and */ . RStudio does, however, provide
a handy Ctrl + Shift + C keyboard shortcut that enables you to
easily insert a # hash character on multiple lines in a single action.

If your R Script will be shared with others, it is a great idea to
document the code by including a header comment. This should
include such details as:

•	 The name of the script

•	 The date the script was created

•	 The author of the script

•	 The purpose of the script

•	 The history of revisions made to the script

The header might also include any special instruction as to how
the script should be executed. For example, an R Script that
requests user input will need to wait until the user has entered
the input before proceeding. In RStudio, this requires the entire
script be sent to the Console rather than running it as usual. This
technique is called “sourcing the script” and a notice to this effect
could be included in the script header as a special instruction:

l1	 In the RStudio Code Editor, begin an R Script by typing
lines of header information
Script name:	 Comment.R
Created on:	 March 1, 2019
Author:		 Mike McGrath
Purpose:	 Echo user input
Version:		 1.0
Execution:	 Must be run as Source to await user input.

Comment.R

fr
om

 R
 f

or
 D

at
a

A
na

ly
si

s
in

 e
as

y
st

ep
s

You can see the variables
and their current values
on the Environment tab
in the Workspace pane.

...cont’d

l2	 Drag the cursor across the entire header to select it, then
press Ctrl + Shift + C to comment-out all selected lines

l3	 Next, add a comment and instruction to request user
input
Request user input.
name <- readline(“Please enter your name: “)

l4	 Now, add a comment and instruction to paste the user
input into a string
Concatenate input and strings.
greeting <- paste(“Welcome”, name, “!”)

l5	 Finally, add a comment and instruction to print out the
entire string
 # Output concatenated string.
print(greeting)

l6	 Following the header instruction, click the Source
button in the Code Editor, or press Ctrl + Shift + S, to
execute the script, then enter input when requested

The built-in readline()
function accepts a string
argument within its
parentheses to output
as a prompt, then it
awaits user input for
assignment to a variable.

The built-in paste()
function accepts a
comma-separated list
of strings within its
parentheses to join
(concatenate) into
a single string for
assignment to a variable.

