
fr
om

 S
w

ift
 P

ro
gr

am
m

in
g

in
 e

as
y

st
ep

s

Variables
Let’s start by learning about variables. If you are new to
programming, then you should think of a variable as a labeled box
that contains an item or a set of items.

Type out the following example:

var greeting = "Hello Swift"

Here, you are creating a variable called greeting, which contains
the text “Hello Swift”. So, greeting would be the box, and “Hello
Swift” would be the data you are storing inside the box.

If you type out the following print command and run it, then you
will notice it will output your variable to the right-hand pane and
to the Debug Area.

print(greeting)

You could change the value of greeting by typing:

greeting = "Hello John"

The value of greeting would now be “Hello John”.

Constants
Type the following inside Playgrounds:

let firstName = "John"

In this example, you would then be assigning “John” to the
variable called firstName. Usually, you can change a variable at
any time; however, when you put let at the start it means the
variable cannot be changed because the variable has been defined
as a constant. So, if you tried to change the constant by typing the
following line of code, then you would get an error:

firstName = "James"

Only code that has
“print” before it will be
shown inside the Debug
Area. The results of
everything else will be
shown in the right-hand
pane when you click the
Play button.

27

fr
om

 S
w

ift
 P

ro
gr

am
m

in
g

in
 e

as
y

st
ep

s

...cont’d

If you changed firstName to a var (var firstName = “John”) instead
of a let, it would work fine. Constants would work well for things like
date of birth, or even URLs that will not change across your app.

Data types
There are various data types you can use with Swift. If you are
coming from another programming language, then you will
probably already be familiar with these. Make sure you type out
the examples inside Playgrounds, as it will help you get used to
each type.

•	 Strings are a sequence of characters like “Good Morning”.
The examples we covered on the last page were all strings.
However, when you wrote your example, Swift presumed that
your variables were strings because of the context of the code.
If you wanted to make sure that Swift knew for sure that your
variable was a string, you would write something like this:

var message: String = "Hello"

•	 Integers are used for whole numbers like 29, 101; etc. Below
is an example:

var myNo: Int = 100

•	 Float is used to represent numbers with a fractional
component. It can be used to hold numbers with larger or
smaller decimal points, like 3.12 and -435.3244.

	 var floatval: Float = 3.12

•	 Double can be used when floating-point values are very large
– for example, 415.324544 and -4254.3255543.

	 var doubleval: Double = 415.324544

•	 Booleans would be used for values that are either true or
false.

	 var isSuccess: Bool = true

Tuples
These can be used to store multiple values in a single value.

	 let playerInfo = ("Mark", 20)

Tuples don't have to hold
the same type of values.
For example, they could
hold a string and an
integer.

Even though the syntax
is different for each
language, learning about
data types lays down a
foundation for learning
new languages.

Variables must be
initialized when declared
unless using type
annotation.

fr
om

 S
w

ift
 P

ro
gr

am
m

in
g

in
 e

as
y

st
ep

s

...cont’d

Combining variables
As well as creating variables, you also need to be able to combine
them. You might want to combine string values or use two or
more values for arithmetic operations.

If you were looking to combine two string variables, it might look
something like this:

var message1: String = "Hello there"
var message2: String = "Swift fans"
message1 + " " + message2

This example creates two different string variables, which both
contain different messages. It then combines the two strings
to create a message. A space has been added (" ") so that the
sentence is spaced out. It should output “Hello there Swift fans”.

If you wanted to do mathematical equations, it would look
something like this:

var num1: Int = 12
var num2: Int = 30
num1 + num2

This example creates two integers, and then adds them up:
12 + 30 = 42.

Swift supports all four standard arithmetic operators:

•	 Addition (+)

•	 Subtraction (-)

•	 Multiplication (*)

•	 Division (/)

Swift has a Remainder operator (%), which will return the value
that is left over when dividing two numbers.

var first: Int = 13
var second: Int = 6
first % second

Giving the result: 1

If you are trying to do a
mathematical calculation,
make sure you are using
the right data type. For
example, if you tried
adding two strings,
it would just join one
string to the other.

29

fr
om

 S
w

ift
 P

ro
gr

am
m

in
g

in
 e

as
y

st
ep

s

...cont’d

Value comparisons
When you build your apps, there are going to be times when
you will need to compare values. For example, in a game you
might want to check whether or not a user has beaten their own
personal best score.

Here are the operators you will need for comparisons:

•	 Equal to: (==)

•	 Not equal to: (!=)

•	 Greater than: (>)

•	 Less than: (<)

•	 Greater than or equal to: (>=)

•	 Less than or equal to: (<=)

Type out these examples inside Playgrounds. Each one will return
a Boolean value (true or false) depending on whether or not the
statement is true.

4 == 4		 //True: 4 is equal to 4
3 != 2 		 //True: 3 is not equal to 2
4 > 5		 //False: 4 is not greater than 5
6 < 8		 //True: 6 is less than 8
2 >= 2		 //True: 2 is equal to 2
5 <= 4		 //False: 5 is not less than or equal to 4

You can also do comparisons with variables of the same type.

var number1 = 8
var number2 = 10
//This will return false
number1 == number2

Converting data types
The example below takes a string and converts it to an integer.
This would come in handy if you were taking a value from a text
box and using it for a mathematical calculation.

let strNo = "215"
let myInt1 = Int(strNo)
print(myInt1!)

If you want to compare
string values, you will
need to use (==).

Lines of code that have
“//” at the start are code
comments. These are a
good way to document
your code.

