%]
v
=
()
>
o
S
o
I~
wv

oo,

{o‘get

—
The %v format specifier
can be used to display
any value, and the %T
format specifier is useful
to confirm the data type

of any variable.

Display Variable Values

'The value of variables can be displayed using the fmt.Printin()
function that was used in Chapter 1 to display the “Hello World!”
message. Alternatively, the desired format in which to display the
variable value can be specified to a fmt.Printf() function using a
suitable “format specifier” and the variable name:

Specifier Description Example
%os A string of characters “Go Fun!”
%d An integer -32768 to +32767 100
%f A floating-point number 0.123456
%c A single character ‘N
%t A boolean value true
%p A machine memory address 0x0022FF34
%v The value in a default format EZZJ;Z{W)
%T The data type of the variable int

A format specifier can ensure that the output occupies a minimum
number of spaces by stating the required number of spaces after
the % character — for example, to ensure that an integer always
fills at least seven spaces with the specifier %7d. If it is preferable
for the blank spaces to be filled with zeros, just add a zero to
make the specifier into %07d.

A precision specifier is a . full stop (period) followed by a number
that can be used with the %f format specifier to determine how
many decimal places to display — for example, to display two
decimal places with %.2f. The precision specifier can be combined
with the minimum space specifier to control the number of spaces
and number of decimal places — for example, to display seven
spaces including two decimal places and empty spaces filled by
zeros with %07.2f. By default, empty spaces precede the number
so it is right-aligned. They can also be added after the number

to make it left-aligned by prefixing the minimum space specifier
with a minus sign.

...cont'd

0 Create a directory named “vars” inside your “src” folder

Begin a main.go program with package and import
declarations

package main

import “fmt”

o Add a main function that declares and initializes two

variables
func main() {
num := 100
pi := 3.1415926536
// Statements to be inserted here.

}

o In the main function, insert statements to output the

variable values in various formats
fmt.Printf(“num: %v type:%T \n”, num, num)
fmt.Printf(“pi: %v type:%T \n\n", pi, pi)

fmt.Printf(“%%7d displays %7d \n", num)
fmt.Printf(“%%07d displays %07d \n\n”, num)

fmt.Printf(“Pi is approximately %1.10f \n", pi)
fmt.Printf(“Right-aligned %20.3f rounded pi \n”, pi)
fmt.Printf(“Left-aligned %-20.3f rounded pi \n", pi)

o Save the program file in the “vars” directory, then run the
program to see the variable values in the specified formats

Cith |

Go Terminal

C:\Users\mike_\go\src=go run vars
num: 100 type:int
num: 3.1415926536 type:float64

%7d displays 100
%07d displays 0000100

Pi 1s aﬁproximate?y 3.1415926536
Right-aligned 3.142 rounded pi
Lett-aligned 3.142 rounded pi

C:\Users\mike_‘\go'\src>g

src\vars\main.go

“o._t\P
C—
The fmt.Printf()

function does not

add a new line after
the output. You must
manually include a \n
newline escape sequence
to move the printer
head to the next line.
To display a % character
with the fmt.Printf()
function, prefix it with
another % character as
seen here.

gew®

| —
Notice that the floating-
point value is rounded
when the format
specifier allocates fewer
decimal places — it is not
simply truncated.

