
30
St

or
e

Va
lu

es

Memory location
addresses are
hexadecimal numbers
that are allocated by
your computer. They will
almost certainly differ
on your system from the
addresses shown in this
example.

Point to Stored Values
Whenever your program creates a container to store data, your
computer allocates a space in memory at which to store the data.
Like houses, memory locations may be of different size but each
one has a unique address.

An initialized variable therefore actually consists of three parts –
name, value, and the memory address where the data is stored.

num

20

0x00009e068

Variable name

Address of num

Value stored in num

Go programming supports the concept of “pointers”. A pointer
variable can store the address of another variable and can access
the value stored at that address.

The declaration of a pointer variable requires the data type to be
prefixed by an * asterisk, to indicate that this will be a pointer:

var ptr *int // Declares this variable will point to an int.

The address of another variable can be assigned to the pointer by
prefixing the other variable’s name with an & ampersand:

ptr = &num // Assigns an address to the pointer variable.

The value at the assigned address can then be accessed by
prefixing the pointer name with an * asterisk:

*ptr // Points to the value at the assigned address.

ptr

0x00009e068

num

20

0x00009e068 0xc000008018

The concept of pointers can be difficult to grasp because the *
asterisk operator performs two purposes – as a type descriptor in
a declaration, and as a dereferencer when placed before a pointer
name. You may at this moment be thinking “Pointers, so what?”
but pointers are widely used in Go programming, so you should
thoroughly understand how they work before proceeding further.

31
...cont’d

src\point\main.go

l1 Create a directory named “point” inside your “src” folder

l2 Begin a main.go program with package and import
declarations
package main
import “fmt”

l3 Add a main function that declares and initializes a regular
integer variable and a pointer variable
func main() {
 var num int = 20
 var ptr *int = &num
 // Statements to be inserted here.
}

l4 Next, insert statements to display the value and memory
address of the regular integer variable
fmt.Printf(“num value: %v type: %T \n”, num, num)
fmt.Printf(“num address: %v type: %T \n\n”, ptr, ptr)

l5 Now, insert statements to display the dereferenced value
and memory address of the pointer variable
fmt.Printf(“num via pointer: %v type: %T \n”, *ptr, *ptr)
fmt.Printf(“ptr address: %v type: %T \n\n”, &ptr, &ptr)

l6 Finally, insert statements to change the value stored in the
integer variable – by assignment to the pointer variable
*ptr = 100
fmt.Printf(“new num value: %v type: %T \n”, num, num)

l7 Save the program file in the “point” directory, then run
the program to see the variable values and addresses

The most important
feature to recognize
here is that the pointer
changes the original
value stored in the
variable to which it
points, not a copy of
that value. This becomes
significant when passing
variables to functions –
see pages 64-67.

