
C
#

 P
R

O
G

R
A

M
M

IN
G

 IN
 EA

SY
 STEP

S

Why choose this book?

It’s easy to follow
Clear, step-by-step instructions
make learning simple.

It’s in full color
This book’s printed in color to make it
simpler to use and easier on the eye.

And it’s fantastic value
Do we need to say any more?

£11.99 UK / $17.99 US

www.ineasysteps.com

It’s fully illustrated
We don’t just tell you how to do it,
we also show you how.

C# Programming in easy steps will teach you
every aspect of the C# language you’ll need
to produce professional programming results.
Assuming no prior knowledge, it shows how
to install the free edition of Visual Studio and
create an environment to start executing your own
programs. By using clear syntax-highlighted code,
which is free to download, this primer:

• Demonstrates all the C# language basics
including variables, arrays, logic, looping,
methods and classes.

• Covers Object Oriented Programming principles.

• Shows how to use this acquired knowledge
to create graphic programs for traditional PC
Desktop apps, and also as Universal apps for
multiple devices.

• Includes a chapter on detecting and debugging
errors in C# programs.

A trusted source for anyone who wants to learn
C# programming efficiently and effectively!

It’s written in plain English
Put off by the jargon? Don’t worry,
we keep things straightforward.

Categories: Computers/Programming

FULLY ILLUSTRATED

EASY TO FOLLOW

PLAIN ENGLISH

IN FULL COLOR

3rd
Edition

M i k e M c G r a t h

Programming
modern coding with C# 10 and .NET 6

C#
Updated for Visual Studio 2022

3rdEdition

FOR BEGINNERS AND EXPERIENCED PROGRAMMERS

EXAMPLES AND DEMONSTRATIONS

CREATE YOUR OWN CODING

OBJECT ORIENTED PROGRAMMING

Let these icons make it even easier

to spice up your learning

wards you off potential
danger!

highlights something worth
remembering

C# Essentials

In Easy Steps ebooks
now available to download onto your

computer, tablet and smartphone from

 www.ineasysteps.com

Liked this book?
Learn more in easy steps

New for kids

Follow us or visit www.ineasysteps.com
for title updates, special offers and
free learning resources

Get the kids
coding with

The QuestKids!

Common Data Types
 int char float double
 decimal bool string

Variable Declaration
 data-type variable-name = value

Array Declaration
 data-type[] array-name =
 { value, value, value }

Comments
 // Single-line comment
 /*
 Multi-line comment
 */

Arithmetic Operators
 + Add (or concatenate strings)
 - Subtract
 * Multiply
 / Divide
 % Modulus
 ++ Increment
 -- Decrement

Comparison Operators
 == Equal
 != Not equal
 < Less than
 <= Less or equal
 > Greater than
 >= Greater or equal

Logical Operators
 && Logical AND
 || Logical OR
 ! Logical NOT

Assignment Operators
 = Assign
 += Add and assign
 -= Subtract and assign
 *= Multiply and assign
 /= Divide and assign
 %= Modulus and assign

Ternary Operator
 (condition) ? statement : statement

If Else
 if (condition)
 { statements }
 else
 { statements }

Switch
 switch (expression)
 {
 case value : statements ; break ;
 case value : statements ; break ;
 default : statements ; break ;
 }

While Loop
 while (condition)
 { statements }

Do While Loop
 do
 { statements } while (condition)

For Loop
 for (initializer ; condition ; updater)
 { statements }

Foreach Loop
 foreach (data-type variable in collection)
 { statements }

Error Handling
 try
 { statements }
 catch (Exception error)
 { statements }

Method
 public void method-name (parameters)
 {
 statements
 }

Class
 access-specifier class Name
 {
 member variables
 member methods
 }

Third Edition

M i k e M c G r a t h

C#
Programming

In easy steps is an imprint of In Easy Steps Limited
16 Hamilton Terrace . Holly Walk . Leamington Spa
Warwickshire . United Kingdom . CV32 4LY
www.ineasysteps.com

Third Edition

Copyright © 2022 by In Easy Steps Limited. All rights reserved. No part
of this book may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording,
or by any information storage or retrieval system, without prior
written permission from the publisher.

Notice of Liability
Every effort has been made to ensure that this book contains accurate
and current information. However, In Easy Steps Limited and the
author shall not be liable for any loss or damage suffered by readers
as a result of any information contained herein.

Trademarks
All trademarks are acknowledged as belonging to their respective
companies.

In Easy Steps Limited supports The Forest Stewardship Council (FSC),
the leading international forest certification organization. All our titles
that are printed on Greenpeace approved FSC certified paper carry the
FSC logo.

Printed and bound in the United Kingdom

ISBN 978-1-84078-973-7

Contents

Contents

Getting started 7

Introducing C# 8
Installing Visual Studio 10
Exploring the IDE 12
Starting a Console project 14
Running a Console project 16
Following the rules 18
Summary 20

Storing values 21

Creating variables 22
Reading input 24
Employing arrays 26
Casting data types 28
Fixing constants 30
Summary 32

Performing operations 33

Doing arithmetic 34
Assigning values 36
Comparing values 38
Assessing logic 40
Examining conditions 42
Setting precedence 44
Summary 46

1

2

3

Making statements 47

Branching with if 48
Switching branches 50
Looping for 52
Looping while 54
Iterating for each 56
Summary 58

Devising methods 59

Creating function 60
Passing arguments 62
Overloading methods 64
Refactoring code 66
Summary 68

Handling strings 69

Discovering string features 70
Manipulating strings 72
Joining and comparing strings 74
Copying and swapping strings 76
Finding substrings 78
Formatting strings 80
Formatting date strings 82
Summary 84

Accessing files 85

Writing a file 86
Appending to a file 88
Reading text and lines 90
Streaming lines 92
Manipulating input and output 94
Summary 96

4

5

6

7

Making statements 47

Branching with if 48
Switching branches 50
Looping for 52
Looping while 54
Iterating for each 56
Summary 58

Devising methods 59

Creating function 60
Passing arguments 62
Overloading methods 64
Refactoring code 66
Summary 68

Handling strings 69

Discovering string features 70
Manipulating strings 72
Joining and comparing strings 74
Copying and swapping strings 76
Finding substrings 78
Formatting strings 80
Formatting date strings 82
Summary 84

Accessing files 85

Writing a file 86
Appending to a file 88
Reading text and lines 90
Streaming lines 92
Manipulating input and output 94
Summary 96

Solving problems 97

Detecting real-time errors 98
Fixing compile-time errors 100
Debugging code 102
Setting breakpoints 104
Catching runtime errors 106
Getting help 108
Summary 110

Creating objects 111

Encapsulating data 112
Creating multiple objects 114
Initializing class members 116
Inheriting class properties 118
Calling base constructors 120
Hiding base methods 122
Directing method calls 124
Providing capability classes 126
Employing partial classes 128
Summary 130

Controlling events 131

Starting a Forms project 132
Adding visual controls 134
Writing functional code 136
Gathering text entries 138
Ticking option boxes 140
Showing user messages 142
Calling system dialogs 144
Creating application menus 146
Making menus work 148
Importing audio resources 150
Summary 152

8

9

10

Building an application 153

Planning the program 154
Assigning fixed properties 156
Designing the layout 158
Setting dynamic properties 160
Adding runtime function 162
Testing the program 164
Publishing the application 166
Summary 168

Targeting devices 169

Starting a Universal project 170
Inserting page components 172
Importing program assets 174
Designing the layout 176
Adding runtime function 178
Testing the program 180
Adjusting the interface 182
Deploying the application 184
Summary 186

Index 187

11

12

The syntax highlighting of the C# code in this book’s easy steps is similar to
the default colors in the Visual Studio Code Editor:
Default Code Color: Black Keywords: Blue Class Objects: Light Blue
Class Methods: Brown String Literals: Red Comments: Green

The source code of all examples in this book is available for free download at
www.ineasysteps.com/resource-center/downloads

The screenshots in this book illustrate the actual results of executing the
listed code steps. If you don’t achieve the result illustrated in any example,
simply compare your code to that in the original example files you have
downloaded to discover where you went wrong.

Welcome to the exciting

world of C# programming.

This chapter introduces the

Visual Studio Integrated

Development Environment

and shows you how to create

a real Windows application.

Introducing C#

Installing Visual Studio

Exploring the IDE

Starting a Console project

Running a Console project

Following the rules

Summary

8

10

12

14

16

18

20

Getting started1

8
G

et
ti

ng
 s

ta
rt

ed

Introducing C#
The introduction of the Microsoft .NET framework at the
Professional Developers Conference in July 2000 also saw
Microsoft introduce a new programming language called C#
(pronounced “see-sharp”). The name was inspired by musical
notation where a # sharp symbol indicates that a written note
should be a semitone higher in pitch. This notion is similar to the
naming of the C++ programming language where the ++ symbol
indicates that a written value should be incremented by 1.

• C# is designed to be a simple, modern, general-purpose,
object-oriented programming language, borrowing key
concepts from several other languages – most notably the
Java programming language. Consequently, everything in C#
is a class “object” with “properties” and “methods” that can be
employed by a program.

• C# is an elegant and “type-safe” programming language that
enables developers to build a variety of secure and robust
applications. You can use C# to create Windows client
applications, XML web services, distributed components,
client-server applications, database applications, and much,
much more.

• C# is specifically designed to utilize the proven functionality
built into the .NET framework “class libraries”. Windows
applications written in C# therefore require the Microsoft
.NET framework to be installed on the computer running the
application – typically, an integral component of the system.

The Microsoft .NET Framework
Each version of the Microsoft .NET framework includes a unified
set of class libraries and a virtual execution system called the
Common Language Runtime (CLR). The CLR allows the C#
language and the class libraries to work together seamlessly.

To create an executable program, source code written in the C#
language is compiled by the C# Compiler into Intermediate
Language (IL) code. This is stored on disk, together with other
program resources such as images, in an “assembly”. Typically, the
assembly will have a file extension of .exe or .dll. Each assembly
contains a “manifest” that provides information about that
program’s security requirements.

9

Just-In-Time compilation
is also known as
“Dynamic Translation”.

Just-In-Time compilation
occurs during program
execution, rather than
prior to its execution.

...cont’d

Operating System Execution

 Common Language Runtime (CLR)
Security/JIT Compiler/Garbage Collection

Microsoft .NET Framework

C# Compiler

Assembly (IL Code & Resources)

C# Source File(s) Resources &
 References

Visual Studio C# Project

When a C# program is executed, the assembly is loaded into
the Common Language Runtime (CLR), and the security
requirements specified in its assembly manifest are examined.
When the security requirements are satisfied, the CLR
performs Just-In-Time (JIT) compilation of the IL code into
native machine instructions. The CLR then performs “garbage
collection”, exception handling, and resource management tasks
before calling upon the operating system to execute the program:

As language interoperability is a key feature of the Microsoft
.NET framework, the IL code generated by the C# Compiler
can interact with code generated by the .NET versions of other
languages such as Visual Basic and Visual C++. The examples
throughout this book demonstrate Visual C# program code.

10
G

et
ti

ng
 s

ta
rt

ed

Installing Visual Studio
In order to create Windows applications with the C#
programming language, you will first need to install a Visual
Studio Integrated Development Environment (IDE).

Microsoft Visual Studio is the professional development tool that
provides a fully Integrated Development Environment for Visual
Basic, Visual C++, Visual J#, and Visual C#. Within its IDE, code
can be written in Visual Basic, C++, J#, or the C# programming
language to create Windows applications.

Visual Studio Community edition is a streamlined version
of Visual Studio, specially created for those people learning
programming. It has a simplified user interface and omits
advanced features of the professional edition to avoid confusion.
C# code can be written within the Code Editor of either version
of the Visual Studio IDE to create Windows applications.

Both Visual Studio and Visual Studio Community provide
an IDE for C# programming but, unlike the fully-featured
Visual Studio product, the Visual Studio Community edition is
completely free and can be installed on any system meeting the
following minimum requirements:

Component Requirement

Operating system

Windows 11
Windows 10 (version 1909 or higher)
Windows Server 2016 or 2019
*Must be the 64-bit version of any of
the above the operating systems.

CPU (processor) 1.8 GHz or faster, 64-bit processor

RAM (memory) 4 GB (16 GB recommended)

HDD (hard drive) Up to 210 GB available space

Video Card
Minimum resolution of 1366 x 768
Optimum resolution of 1920 x 1080

The Visual Studio Community edition is used throughout this
book to demonstrate programming with the C# language, but the
examples can also be recreated in Visual Studio. Follow the steps
opposite to install the Visual Studio Community edition.

11

Choosing a different
destination folder may
require other paths to
be adjusted later – it’s
simpler to just accept the
suggested default.

Both Visual Studio and
Visual Studio Installer
items get added to your
All Apps menu. You
can re-run the installer
at a later date to add or
remove features.

...cont’d

l1 Open your web browser and navigate to the Visual Studio
download page – at the time of writing, this can be found
at visualstudio.microsoft.com/downloads

l2 Click the button in the Community edition section to
download a VisualStudioSetup.exe setup file

l3 Click on the setup file icon to begin setup and to
run the Visual Studio Installer

l4 Accept the suggested installation location, then click Next

l5 Check the two C# Installer options shown below

l6 Click the Install button at the bottom-right of the
installer to begin the download and installation process

12
G

et
ti

ng
 s

ta
rt

ed

Exploring the IDE
l1 Go to your All apps menu, then select the Visual Studio

2022 menu item added there by the installer:

l4 For now, just click the Continue without code link to
launch the Visual Studio application

The Visual Studio Integrated Development Environment (IDE)
appears, from which you have instant access to everything needed
to produce complete Windows applications – from here, you can
create exciting visual interfaces, enter code, compile and execute
applications, debug errors, and much more.

l2 Sign in with your Microsoft account, or register an
account then sign in, to continue

l3 See a default Start Page appear where recent projects will
be listed alongside several “Get started” options

The first time Visual
Studio starts it takes
a few minutes as it
performs configuration
routines.

In the future your recent
projects will be listed
here so you can easily
reopen them.

13
...cont’d

• Menu Bar – Where you can select actions to perform on all
your project files and to access Help. When a project is open,
extra menus of Project and Build are shown in addition to the
default menu selection of File, Edit, View, Git, Project, Debug,
Analyze, Tools, Extensions, Window, and Help.

• Toolbar – Where you can perform the most popular menu
actions with a single click on their associated shortcut icons.

• Toolbox – Where you can select visual elements to add to
a project. Click View, Toolbox or a side bar button to see its
contents. When a project is open, “controls” such as Button,
Label, CheckBox, RadioButton, and TextBox are shown here.

• Solution Explorer – Where you can see at a glance all the files
and resource components contained within an open project.

• Status Bar – Where you can read the state of the current
activity being undertaken. When building an application, a
“Build started” message is displayed here, changing to a
“Build succeeded” or “Build failed” message upon completion.

Visual Studio IDE components
The Visual Studio IDE initially provides these standard features:

Menu Bar

Toolbar

Toolbox

Solution Explorer

Status Bar

The IDE may have a
Light color theme by
default. To change the
color theme, choose
the Tools, Options
menu then select
Environment, General,
Color Theme and select
Blue or Dark theme, or
select the Use system
setting option.

Notifications

Start Button

14
G

et
ti

ng
 s

ta
rt

ed

Starting a Console project
l1 On the Menu Bar, click File, New, Project... or press

Ctrl + Shift + N, to open the “Create a new project” dialog

Visual Studio now creates your new project and loads it into the
IDE. A Code Editor window appears, containing default skeleton
project code generated by Visual Studio.

l4 Drag the Code Editor window tab to undock the Code
Editor window from the Visual Studio IDE frame

The default location for
Visual Studio projects
is a C:\Users\username\
source\repos directory.

C#

GettingStarted

The source code of
all examples in this
book is available for
free download at
www.ineasysteps.
com/resource-center/
downloads

l2 In the “Create a new project” dialog box, select the
C# Console App item (for .NET Core on Windows,
Linux and macOS), then click Next

If the Code Editor
window does not open
automatically, click the
Program.cs file icon
in Solution Explorer to
open the Code Editor.

l3 In the next dialog, enter a project name plus location and
click the Create button, then select the .NET 6.0 (Long-
term support) framework and click Create again

15
...cont’d

The undocked window title displays the project name, and
the tab displays the file name of the code as “Program.cs”.

You can drag the title
bar of any window to
undock that window
from the Visual Studio
IDE frame. When
dragging, you can drop
a window on the “guide
diamond” (shown below)
to dock the window in
your preferred position.

The Code Editor window is where you write C# code to create
an application. The Visual Studio IDE has now gathered all the
resources needed to build a default Console application.

The top-left drop-down box indicates the name of the project to
which this file belongs – in this case, it’s “GettingStarted”.

l5 Select the View, Solution
Explorer menu to open a
Solution Explorer window,
to discover all the items
in your project – click the
arrow buttons to expand or
collapse categories

l6 Select
the View,
Properties
Window
menu to open
a Properties
window, then
select any item
in the Solution Explorer window to see its properties
then appear in the Properties window

16
G

et
ti

ng
 s

ta
rt

ed

You will discover how
to use breakpoints
in Chapter 8 (Solving
problems).

Running a Console project
C#

GettingStarted
(continued)

In order to run a program, Visual Studio will first build the app
then execute the app. This can be done in one of two modes:

• Debug Mode – The program is compiled with symbolic
debugging information included in the program files. This
allows Visual Studio’s built-in debugger to find bugs, but has
optimization of Intermediate Language (IL) code disabled.

• Release Mode – The program is compiled without
debugging information included in the program files, but has
optimization of Intermediate Language (IL) code enabled.

During program development it is generally preferable to run your
programs in Debug mode. There is an option to run a program in
Debug mode without debugging, but it’s seldom desirable as this
executes the program without the possibility of stepping through
the code to breakpoints.

l1 On the toolbar, set the solution configuration to Debug

l2 Now, click the green arrow “Start” button to build and run
the program with debugging enabled

Alternatively, select
Debug, Start
Debugging to build
and run a program with
debugging enabled.

l3 See the app display a traditional greeting in the Console

l4 Press any keyboard key to close the Console window, and
return to the Visual Studio Code Editor

17
...cont’d

To edit the default
Console window colors
and font, right-click its
window Titlebar and
choose Properties. For
clarity, all other Console
window screenshots in
this book feature Lucida
Console 14-pixel Font
in black Screen Text
on a white Screen
Background.

Code analysis
Examination of the code helps to understand what is happening:

• The first line is a comment. Anything on a line after // is
ignored by the compiler. By default, comments are colored
green in the Visual Studio Code Editor. In this case, the
comment includes a hyperlink that will open a page in your
web browser. The page explains how the .NET 6 framework
uses new templates to simplify the creation of Console apps.

• Console.WriteLine(“Hello, World!”) ; This is a statement
that calls upon the WriteLine() method of the Console class
to output the text string enclosed in quote marks within its
parentheses. Notice that the statement is terminated by a ;
semi-colon character. By default, class names are colored light
blue, method names are colored brown, strings are colored
red, and other code here is colored black.

l5 Add another line to the code, as a statement to output a
second text string containing your own name such as...
Console.WriteLine(“Good afternoon, Mike!”) ;

l6 Run the modified code in Debug mode to see the result

New in .NET 6 are
code templates, which
the compiler uses to
automatically generate
namespace, class, and
method elements when
building a Console app.

18
G

et
ti

ng
 s

ta
rt

ed

It is recommended that
you comment your
code to make it readily
understood by others or
when revisiting your own
code later.

The WriteLine()
method automatically
adds a newline after its
output.

As with all programming languages, C# has a number of syntax
rules that must be precisely followed to ensure the code is
correctly formatted for the C# compiler to clearly understand:

• Case-sensitivity – C# is a case-sensitive language, which
means that uppercase “A” and lowercase “a” are regarded as
totally different items.

• Termination – All statements in C# language must be
terminated by a ; semicolon character, just as all sentences in
English language must be terminated by a . period character
– for example: Console.WriteLine(“Hello World!”) ;

• Single-line comments – Brief comments on a single line
must begin with // two forward slash characters – for
example: // Output the traditional greeting.

• Block comments – Extended comments on multiple lines
must begin with /* forward slash and asterisk characters, and
must end with the reverse */ asterisk and forward slash – for
example:
/*
 C# Programming in easy steps.
 Getting started with the traditional greeting.
*/

• White space – Spaces, tabs, newline characters, and
comments are ignored by the C# compiler, so can be used
extensively to organize code without performance penalty.

• Escape sequences – The C# compiler recognizes \n as a
newline character and \t as a tab character, so these can be
used to format output –
for example: Console.WriteLine(“Line One \n Line Two”) ;

• Naming conventions – A programmer-defined identifier
name in C# code may begin with an _ underscore character
or a letter in uppercase or lowercase. The name may also
contain underscore, letter, and number characters – for
example: class MyNo1_Class

• Keywords – The C# language has a number of keywords
(listed opposite) that have special syntactic meaning and may
not be used to name programmer-defined items in code.

Following the rules

19
...cont’d

C# Reserved Keywords

abstract as base bool

break byte case catch

char checked class const

continue decimal default delegate

do double else enum

event explicit extern false

finally fixed float for

foreach goto if implicit

in int interface internal

is lock long namespace

new null object operator

out override params private

protected public readonly ref

return sbyte sealed short

sizeof stackalloc static string

struct switch this throw

true try typeof uint

ulong unchecked unsafe ushort

using virtual void volatile

while

C# Contextual Keywords

add and alias ascending async

await by descending dynamic equals

from get global group init

into join let managed nameof

nint not notnull nuint on

or orderby partial record remove

select set unmanaged value var

when where with yield

If you absolutely must
use a keyword to
name a programmer-
defined element, it may
be prefixed by an @
character to distinguish it
from the keyword – but
this is best avoided.

Contextual keywords
have special significance
in certain code – for
example, get and set in
method declarations.

20
G

et
ti

ng
 s

ta
rt

ed

Summary
• C# is an object-oriented programming language that utilizes

the proven functionality of the Microsoft .NET class libraries.

• The C# compiler generates Intermediate Language (IL) code
that is stored on disk alongside resources in an assembly.

• The Common Language Runtime (CLR) examines an
assembly’s security requirements before JIT compilation.

• Just-In-Time compilation translates IL code into native
machine code for execution by the operating system.

• Microsoft Visual Studio provides a fully Integrated
Development Environment (IDE) for C# programming.

• A new Visual C# Console application generates default
skeleton project code in the Visual Studio Code Editor.

• The Visual Studio Solution Explorer shows all files in a
project, and the Properties window shows their properties.

• The default C# skeleton code provided in the Code Editor can
create a C# Console program that outputs a text string.

• The Console class has a WriteLine() method that can be used to
output a quoted text string specified within its parentheses.

• A C# program can be run in the Visual Studio IDE by
selecting the Debug, Start Debugging menu, or by setting a
Debug solution configuration and clicking the Start button.

• C# is a case-sensitive programming language in which all
statements must be terminated by a ; semicolon character.

• Single-line // comments and /* */ block comments can be
incorporated to explain C# program code.

• C# has keywords that have special syntactic meaning, so
cannot be used to name programmer-defined code items.

This chapter demonstrates

how to store various types of

data within a C# program.

Creating variables

Reading input

Employing arrays

Casting data types

Fixing constants

Summary

22

24

26

28

30

32

Storing values2

22
St

or
in

g
va

lu
es

Names are case-sensitive
in C# – so variables
named num, Num, and
NUM are treated as
three individual variables.
Traditionally, C# variable
names are created in all
lowercase characters.

Creating variables

Data Type Description

int An integer whole number, e.g. 100

char A single character, e.g. ‘A’

float A floating-point number of 7-digit precision

double A floating-point number of 15-digit precision

decimal A floating-point number of 28-digit precision

bool A Boolean value of true or false

string A string of characters, e.g. “In Easy Steps”

A “variable” is like a container in a C# program in which a data
value can be stored inside the computer’s memory. The stored
value can be referenced using the variable’s name.

The programmer can choose any name for a variable, providing
it adheres to the C# naming conventions – a chosen name may
only contain letters, numbers, and the underscore character,
but must begin with a letter, underscore, or @ character. Also,
the C# keywords must be avoided. It’s good practice to choose
meaningful names to make the code more comprehensible.

To create a new variable in a program it must be “declared”,
specifying the type of data it may contain and its chosen name.
A variable declaration has this syntax:

data-type variable-name ;

Multiple variables of the same data type can be created in a single
declaration as a comma-separated list with this syntax:

data-type variable-name1 , variable-name2 , variable-name3 ;

The most common C# data types are listed in the table below,
together with a brief description and example content:

Variable declarations must appear before statements that use them
– so they will be available for reference within statements.

Character values of the
char data type must
be enclosed in single
quotes, but character
strings of the string data
type must be enclosed
between double quotes.

The decimal data type is
preferred for storage of
monetary values.

23

The \t in the string is
an “escape sequence”
that prints a tab in the
output. The + symbol
is a “concatenation”
operator, which adds a
stored value to the string.

Suffix f to a float value
and m to a decimal
value to distinguish them
from a double value.

...cont’d

When a value is assigned to a variable it is said to have been
“initialized”. Optionally, a variable may be initialized in its
declaration. The value stored in any initialized variable can be
displayed using the WriteLine() method, which was used on
page 16 to display the “Hello World!” greeting:

l1 Open the Visual Studio IDE, then start a new
C# Console App project and name it “Variables”

l2 Remove the default skeleton code, then type this code to
name the Console window
Console.Title = “Variables” ;

l3 Next, precisely type these statements to declare and
initialize variables of common C# data types
char letter ; letter = ‘A’ ; // Declared then initialized.
int number ; number = 100 ; // Declared then initialized.
float body = 98.6f ; // Declared and initialized.
double pi = 3.14159 ; // Declared and initialized.
decimal sum = 1000.00m ; // Declared and initialized.
bool flag = false ; // Declared and initialized.
string text = “C# Is Fun” ; // Declared and initialized.

l4 Now, insert statements to display each stored value
Console.WriteLine(“char letter:\t” + letter) ;
Console.WriteLine(“int number:\t” + number) ;
Console.WriteLine(“float body:\t” + body) ;
Console.WriteLine(“double pi:\t” + pi) ;
Console.WriteLine(“decimal sum:\t” + sum) ;
Console.WriteLine(“bool flag:\t” + flag) ;
Console.WriteLine(“string text:\t” + text) ;
Console.ReadKey() ;

l5 Press Start to run the application in Debug mode and see
the values stored inside variables

C#

Variables

Calling the Readkey()
method is a little trick
to keep the Console
window open when the
app is published, until
the user presses any key.

24
St

or
in

g
va

lu
es

It is important to
recognize that the
ReadLine() method
always reads input as a
string value.

Notice how two +
concatenation operators
are used here to insert
input into a string.

Reading input
In order to interact with the user, C# programs will typically
require the user to input some values. The ReadLine() method – a
companion to the ReadKey() method – can be used to read user
input. User input within the Console can be assigned to a string
data type variable by the ReadLine() method when the user hits
Enter to complete a line.

When requesting user input, it’s preferable to prompt the user
without adding a newline after the request. This is easily achieved
using the Console.Write() method:

l1 Open the Visual Studio IDE, then start a new
C# Console App project and name it “Input”

l2 Remove the default skeleton code, then type this code to
name the Console window
Console.Title = “Input” ;

l3 Next, precisely type these statements to request user input
for assignment to a variable
Console.Write(“Please Enter Your Name: “) ;
string name = Console.ReadLine() ;

l4 Now, add statements to display a message containing the
stored user input value
Console.WriteLine(“Welcome ” + name + “!”) ;
Console.ReadKey() ;

l5 Press Start or F5 to run the application and see the
stored user input value displayed in output

C#

Input

Numerical values input by the user are assigned to the string
variable as characters – so arithmetic cannot be performed on these.

25

Here, the second input
number gets converted
to a numerical value
before addition to the
first input number.

...cont’d

When you require the user to input numerical values it is
necessary to convert the string values read by the ReadLine()
method into numerical data types. The System.Convert class
provides a number of useful methods for this purpose, including:

Method Returns

Convert.ToInt32() A 32-bit signed integer

Convert.ToDouble() A floating-point precision number

Convert.ToDecimal() A decimal precision number

The string value read by the ReadLine() method needs simply to
be specified within the parentheses of the appropriate method:

l1 Start a new C# Console App and name it “Conversion”
Console.Title = “Conversion” ;

l2 Type these statements to request user input for conversion
and assignment to two variables
Console.Write(“Please Enter A Number: “) ;
double num = Convert.ToDouble(Console.ReadLine()) ;
Console.Write(“Now Enter Another Number: “) ;
double sum=
 num + Convert.ToDouble(Console.ReadLine()) ;

l3 Now, add statements to display a message containing the
sum total of the user input values
Console.WriteLine(“Total = ” + sum) ;
Console.ReadKey() ;

l4 Press Start or F5 to run the application, then enter two
values to see the converted input added in output

C#

Conversion

There is also a useful
Convert.ToString()
method to translate
values to string type.

26
St

or
in

g
va

lu
es

A special foreach loop
construct allows you to
easily iterate through all
elements of an array –
see page 56 for details.

Array numbering starts
at zero – so the final
element in an array of
six elements is number
5, not number 6. This
numbering is known as a
“zero-based index”.

Employing arrays
An array is a variable that can store multiple items of data –
unlike a regular variable, which can only store one piece of data.
The pieces of data are stored sequentially in array “elements” that
are numbered, starting at zero. So, the first value is stored in
element 0, the second value is stored in element 1, and so on.

An array is declared by stating the data type, suffixed by [] square
brackets to denote an array. This alone does not initialize the
array variable in memory until an array “instance” is created by
specifying an element size using the new keyword, like this:

data-type [] array-name = new data-type[size] ;

Values can then be individually assigned to each available element:

array-name[element-number] = value ;

Alternatively, an array can be initialized and values assigned
to each element when it is declared by stating values for each
element in a comma-separated list, grouped within braces:

data-type [] array-name =
 new data-type[size] { value , value , value } ;

Any individual element’s value can be referenced using the array
name followed by square brackets containing the element number
– for example, to reference the value within the first element:

array-name[0]

Collectively, the elements of an array are known as an “index”.
Arrays can have more than one index – to represent multiple
dimensions, rather than the single dimension of a regular array.
Multi-dimensional arrays of three indices and more are
uncommon, but two-dimensional arrays are useful to store
grid-based information such as coordinates.

To create a multi-dimensional array, the [] square brackets
following the data type in the declaration must contain a comma
for each additional index. Similarly, the size of each index must be
specified as a comma-separated list, like this:

data-type [,] array-name = new data-type[size , size] ;

Values can then be individually assigned to each available element:

array-name[element-number , element-number] = value ;

You can only store within
array elements data of
the type specified in the
array declaration.

27

The number of specified
values must exactly
match the specified array
size to avoid an error.

...cont’d

Alternatively, a multi-dimensional array can be initialized when it
is declared by stating values for each index in a comma-separated
list, grouped within braces – in a comma-separated group
enclosed within braces:

data-type [,] array-name = new data-type[sizeX , sizeY]
 { { value , value , value } , { value , value , value } } ;

Any individual element’s value can be referenced using the array
name followed by square brackets containing the element number
for each index – for example, to reference the value within the
first element of the second index:

array-name[1 , 0]

l1 Start a new C# Console App and name it “Arrays”
Console.Title = “Arrays” ;

l2 Next, type this statement to create a string array
string [] cars = new string[3] { “BMW”, ”Ford”, ”Opel” } ;

l3 Now, type this statement to create a 2-dimensional array
int [,] coords = new int[2, 3] { { 1, 2, 3 } , { 4, 5, 6 } } ;

l4 Add statements to display output containing the stored
array element values
Console.WriteLine(“Second Car: ” + cars[1]) ;
Console.WriteLine(“X1,Y1: ” + coords[0, 0]) ;
Console.WriteLine(“X2,Y3: ” + coords[1, 2]) ;
Console.ReadKey() ;

l5 Press Start or F5 to run the application and see the
values stored within array elements

[0]

[1][0]

[2]

[1]

1

6

5

4

3

2

X

Y

C#

Arrays

28
St

or
in

g
va

lu
es

The result of dividing
an integer by another
integer is truncated, not
rounded – so a result of
9.9 would become 9.

Casting data types
A value stored in a variable can be forced (coerced) into a variable
of a different data type by converting the value to a different type.
This process is known as “casting”, and may be implicit or explicit.

• Implicit casting is automatically performed by C# in a type-
safe manner when converting numbers from smaller to larger
precision data types. For example, when adding an int to a
double, the int value is automatically converted to a double.

• Explicit casting, on the other hand, requires a cast operator to
be included in a statement to specify the data type to which
the value should be cast. The required new data type must be
specified in parentheses preceding the name of the variable
containing the data to be cast, so its syntax looks like this:

variable-name = (data-type) variable-name ;

This is the traditional form of casting that is also found in the C
programming language. Casting is often necessary to accurately
store the result of an arithmetic operation to prevent data loss.
Division of one integer by another integer will always produce an
integer result, which may be truncated. For example, the integer
division 7/2 produces the truncated integer result of 3.

To store the accurate floating-point result would require the result
be cast into a suitable data type, such as a double, like this:

double sum = (double) 7 / 2 ; // sum = 3.5

It should be noted that operator precedence casts the first operand
7 into the specified data type before implementing the arithmetic
operation /2 division, so effectively the statement is:

double sum = (double) (7) / 2 ; // sum = 3.5

Bracketing the expression as (7 / 2) would perform the arithmetic
first on integers, so the integer result would be truncated before
being cast into the float variable – not the desired effect!

double sum = (double) (7 / 2) ; // sum = 3.0

Single character values can usefully be explicitly cast to an int data
type to reveal their Unicode code value. Similarly, the process can
be reversed to reveal the character value of an integer.

Casting is also known as
“type conversion”.

29
...cont’d

l1 Start a new C# Console App and name it “Cast”
Console.Title = “Cast” ;

l2 Type these statements to create and initialize a double-
precision floating-point variable and an integer variable
double num = 10.5 ;
int integer = 2 ;

l3 Next, add statements to implicitly cast the integer value
into a double-precision value, and display the result
num = num + integer ;
Console.WriteLine(“Implicit Cast: ” + num) ;

l4 Now, explicitly cast the result of an integer division into a
double-precision value, and display that result
num = (double) 7 / integer ;
Console.WriteLine(“Explicit Cast: ” + num) ;

l5 Cast an integer value into a char data type and display its
Unicode equivalent character
char letter = (char) 65 ;
Console.WriteLine(“Cast Integer: ” + letter) ;

l6 Cast a character value into an int data type and display its
Unicode equivalent code number
int unicode = (int) ‘A’ ;
Console.WriteLine(“Cast Letter: ” + unicode) ;
Console.ReadKey() ;

l7 Press Start or F5 to run the application and see the
values cast into other data types

C#

Cast

Remove the (double)
cast from Step 4 to
see the result become
truncated.

30
St

or
in

g
va

lu
es

Fixing constants
Variable declarations explicitly specify their permissible data
type using keywords such as string, int, or double to ensure the
program cannot accidentally assign inappropriate data. Where
you are certain this will never occur, you may use the var (variant)
keyword when declaring a variable, to implicitly specify its data
type according to the data type of its initial value. In this case, the
C# compiler will automatically determine the appropriate data
type. The var keyword is most useful to store a value that is other
than of the standard C# numerical, Boolean, or string data types.
All variable declarations made using the var keyword must assign
an initial value to immediately determine that variable’s data type.

The data type of any variable can be revealed by dot-suffixing the
GetType() method onto the variable name. For example, where
a num variable is a double data type, calling num.GetType() will
return a System.Double result.

When a stored value is never intended to be changed, a “constant”
container can be created to safeguard it from change. Its
declaration is similar to that of a variable, but begins with the
const keyword. Each declaration made using the const keyword
must assign an initial value to immediately fix its constant value.

Multiple constant values can be defined in an enumerator list
using the enum keyword and a specified identifier name. This
creates a data type that consists of a comma-separated list of
named constants within { } braces. The enumerator list has an
underlying default int value that numbers the list names from
zero, much like the elements in an array. Any name within the
list can be referenced by dot-suffixing it to the list name, and its
underlying index number revealed by casting.

The C# Enum class provides several methods to work with
enumerator lists. Many of these require the data type of the list as
an argument, so this can usefully be assigned to a var variable by
specifying the list name as an argument to the typeof() method.
The Enum class GetName() method can reveal the name at a
specified index position, and the IsDefined() method can be used
to test whether the list contains a specified name. An enumerator
list declaration can be written in its own code file, or after all
other “top-level” statements in the main “Program.cs” code file.

Declaring variables using
the var keyword can
make the program code
less readable, as it does
not indicate data types.

1000000

31
...cont’d

l1 Start a new C# Console App and name it “Constant”
Console.Title = “Constant” ;

l2 In Solution Explorer, right-click on the “Constant”
project icon and choose Add, New Item from the menus

l3 Select the Code File option, then name it “Enums.cs”
and click the Add button – to add the file to this project

l4 In the Code Editor, type this statement within the newly
added file – to create an enumerator list
enum Days { Sat, Sun, Mon, Tue, Wed, Thu, Fri } ;

l5 Now, turn your attention to the main “Program.cs” file,
then declare and initialize a constant and three variables
const double pi = 3.14159265358979 ;
var daysType = typeof(Days) ;
string name = Enum.GetName(daysType , 1) ;
bool flag = Enum.IsDefined(daysType , “Mon”) ;

l6 Next, add statements to reveal the constant’s data type
and details of the first two items in the enumerator list
Console.WriteLine(“Pi Type: ” + pi.GetType()) ;
Console.WriteLine(“Circumference: ” + (pi * 3)) ;
Console.WriteLine(“\nFirst Name: ” + Days.Sat) ;
Console.WriteLine(“1st Index: ” + (int) Days.Sat) ;
Console.WriteLine(“\n2nd Index: ” + name) ;
Console.WriteLine(“Contains Mon?: ” + flag) ;
Console.ReadKey() ;

l7 Press Start or F5 to run the application and see the
constant values in operation

C#

Constant

You may want to avoid
the var keyword where
possible to be sure of
variable data types. For
example, with the line
var id = getID() ;
the assigned value (and
therefore the variable
data type) could be
numeric or a string.

The enumerator list
contains names, not
strings, so they need not
be enclosed in quote
marks, but the name
must be supplied as a
string argument to the
IsDefined() method.

32
St

or
in

g
va

lu
es

Summary
• A variable stores a data value within the computer’s memory,

and the value can be referenced using that variable’s name.

• A variable declaration must specify the type of data it may
contain, and a valid programmer-specified name.

• Common C# data types include int, char, float, double,
decimal, bool, and string.

• Variables must be declared before they can be referenced.

• A variable becomes initialized when it is assigned a value.

• The Console.ReadLine() method can be used to assign user
input to a variable.

• The Console.WriteLine() method adds a newline after its
output, but the Console.Write() method does not.

• The System.Convert class provides a number of useful methods
to convert string values to numerical data types.

• An array variable can store multiple items of data within
sequential elements of a zero-based index.

• An array declaration must specify the type of data it may
contain, followed by [] and a programmer-specified name.

• An array is not initialized until an array instance is created
using the new keyword to specify data type and element size.

• Values can be assigned to individual array elements using the
array name and the element index number.

• An array declaration can assign values to all of its array
elements as a comma-separated list of values within { } braces.

• Arrays can have more than one index, to represent multiple
dimensions where each index is separated by a comma.

• Casting is the conversion of one data type to another.

• Implicit casting is performed automatically by C#.

• Explicit casting is performed by including a cast operator
within a statement, to specify the required new data type.

• When a stored value is never intended to be changed, a
“constant” container can be created using the const keyword.

• An enumerator list declaration is created using the enum
keyword.

This chapter introduces C#

operators and demonstrates

the operations they can

perform.

Doing arithmetic

Assigning values

Comparing values

Assessing logic

Examining conditions

Setting precedence

Summary

34

36

38

40

42

44

46

Performing
operations3

34
Pe

rf
or

m
in

g
op

er
at

io
ns

Doing arithmetic
The arithmetic operators commonly used in C# programs are listed
in the table below, together with the operation they perform:

The operators for assignment, addition, subtraction, multiplication,
and division act as you would expect, but care must be taken
to group expressions where more than one operator is used –
operations within innermost () parentheses are performed first:

a = b * c - d % e / f ; // This is unclear.

a = (b * c) - ((d % e) / f) ; // This is clearer.

The % modulus operator will divide the first given number by the
second given number and return the remainder of the operation.
This is useful to determine if a number has an odd or an even value.

The ++ increment operator and -- decrement operator alter the
given number by 1 and return the resulting value. These are most
commonly used to count iterations in a loop – counting up on
each iteration with the ++ increment operator, or counting down
on each iteration with the -- decrement operator.

The ++ increment and -- decrement operators can be placed
before or after a value to different effect – placed before the
operand (prefix), its value is immediately changed; placed after the
operand (postfix), its value is noted first, then the value is changed.

Operator Operation

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

++ Increment

-- Decrement

The % modulus operator
is also known as the
“remainder” operator.

Values used with
operators to form
expressions are called
“operands” – in the
expression 2 + 3 the
numerical values 2 and 3
are the operands.

The + operator is dual-
purpose – it is also used
to concatenate strings.

35

Remember that a prefix
operator changes
the variable value
immediately but a postfix
operator changes the
value subsequently.

Here, the \t escape
sequence is used to
output a tab space, and
the \n escape sequence
is used to output
additional newlines.

...cont’d

l1 Start a new C# Console App and name it “Arithmetic”
Console.Title = “Arithmetic” ;

l2 Type these statements to create and initialize two integer
variables
int a = 8 ;
int b = 4 ;

l3 Next, add statements to output the result of each basic
arithmetical operation
Console.WriteLine(“Addition:\t: ” + (a + b)) ;
Console.WriteLine(“Subtraction:\t: ” + (a - b)) ;
Console.WriteLine(“Multiplication:\t: ” + (a * b)) ;
Console.WriteLine(“Division:\t: ” + (a / b)) ;
Console.WriteLine(“Modulus:\t: ” + (a % b)) ;

l4 Now, add statements to output the result of a postfix
increment operation
Console.WriteLine(“\nPostfix Increment:\t: ” + (a++)) ;
Console.WriteLine(“Postfix Result.....:\t: ” + a) ;

l5 Finally, add statements to output the result of a prefix
increment operation – for comparison with postfix
Console.WriteLine(“\nPrefix Increment:\t: ” + (++b)) ;
Console.WriteLine(“Prefix Result.....:\t: ” + b) ;
Console.ReadKey() ;

l6 Press Start or F5 to run the application and see the
results produced by each arithmetic operator

C#

Arithmetic

36
Pe

rf
or

m
in

g
op

er
at

io
ns

Assigning values
The operators that are used in C# programming to assign values
are listed in the table below. All except the simple = assignment
operator are a shorthand form of a longer expression, so each
equivalent is given for clarity:

In the assignment example above, where a = b, the variable
named “a” is assigned the value that is contained in the variable
named “b” – so that is then the value stored in the a variable.
Technically speaking, the assignment operator stores the value of
the right-hand operand in the memory location denoted by the
left-hand operand, then returns the value as a result.

The += combined operator is useful to add a value onto an
existing value that is stored in the a variable. In the example
above, where a += b, the value in variable b is added to that in
variable a – so the total is then the value stored in the a variable.
The arithmetic operation is performed first with the grouped
operands. The result is then stored in the memory location
denoted by the first variable and returned.

All the other combined operators work in the same way by
making the arithmetical operation between the two values first,
then assigning the result of that operation to the first variable – to
become its new stored value.

With the %= combined operator, the grouped left-hand operand
a is divided by the grouped right-hand operand b, then the
remainder of that operation is assigned to the a first variable.

Operator Example Equivalent

= a = b a = b

+= a += b a = (a + b)

-= a -= b a = (a - b)

*= a *= b a = (a * b)

/= a /= b a = (a / b)

%= a %= b a = (a % b)

The += combined
operator is dual-purpose
– it can also be used to
concatenate strings.

It is important to regard
the = operator to
mean “assign” rather
than “equals” to avoid
confusion with the ==
equality operator that is
described on page 38.

37

The operands must be of
the same data type, or
the right-hand operand
must be implicitly
convertible to the type of
the left-hand operand.

Notice how \n\n escape
sequences are used here
to add two newlines for
spacing output.

...cont’d

l1 Start a new C# Console App and name it “Assign”
Console.Title = “Assign” ;

l2 Type these statements to declare two integer variables
int a ;
int b ;

l3 Next, add statements to output simple assigned values
Console.Write(“Assign Values: ”) ;
Console.Write(“\t a = ” + (a = 8)) ;
Console.WriteLine(“\t b = ” + (b = 4)) ;

l4 Now, add statements to output combined assigned values
Console.Write(“\n\nAdd and Assign: ”) ;
Console.Write(“\t a += b (8 += 4)\t a = ” + (a += b)) ;

Console.Write(“\n\nSubtract and Assign: ”) ;
Console.Write(“\t a -= b (12 -= 4)\t a = ” + (a -= b)) ;

Console.Write(“\n\nMultiply and Assign: ”) ;
Console.Write(“\t a *= b (8 *= 4)\t a = ” + (a *= b)) ;

Console.Write(“\n\nDivide and Assign: ”) ;
Console.Write(“\t a /= b (32 /= 4)\t a = ” + (a /= b)) ;

Console.Write(“\n\nModulus and Assign: ”) ;
Console.Write(“\t a %= b (8 %= 4)\t a = ” + (a %= b)) ;
Console.ReadKey() ;

l5 Press Start or F5 to run the application and see the
results produced by each assignment operator

C#

Assign

38
Pe

rf
or

m
in

g
op

er
at

io
ns

The comparison
operators are also known
as “relational operators”.

Comparing values
The operators that are commonly used in C# programming to
compare two numerical values are listed in the table below:

The == equality operator compares two operands and will return
true if both are equal in value, otherwise the == operator will
return false. If both are the same number, they are equal, or if both
are characters, their Unicode code values are compared numerically.

Conversely, the != inequality operator returns true if two operands
are not equal, using the same rules as the == equality operator,
otherwise it returns false. Equality and inequality operators are
useful in testing the state of two variables to perform conditional
branching in a program.

The > “greater than” operator compares two operands and will
return true if the first is greater in value than the second, or it will
return false if it is equal or less in value. The < “less than” operator
makes the same comparison but returns true if the first operand is
less in value than the second, otherwise it returns false. Typically, a
> “greater than” or < “less than” operator is used to test the value
of an iteration counter in a loop structure.

Adding the = assignment operator after a > “greater than”
operator or a < “less than” operator makes it also return true if the
two operands are exactly equal in value.

Operator Comparative test

== Equality

!= Inequality

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

You can specify a
Boolean value to the
Convert.ToDouble()
method to discover
that true is represented
numerically as 1, and
false is represented as 0.

39

When comparing
numbers, remember to
test for equality as well
as testing for higher and
lower values.

The Unicode code value
for uppercase ‘A’ is 65
but for lowercase ‘a’ it’s
97 – so their comparison
here returns false.

...cont’d

l1 Start a new C# Console App and name it “Comparison”
Console.Title = “Comparison” ;

l2 Type these statements to declare three integer variables
and two character variables to be compared
int nil = 0 , num = 0 , max = 1 ;
char cap = ‘A’ , low = ‘a’ ;

l3 Next, add statements to output the result of equality
comparisons of integers and characters
Console.Write(“Equality:”) ;
Console.Write(“\t (0 == 0) : ” + (nil == num)) ;
Console.Write(“\n\t\t (A == a) : ” + (cap == low)) ;

l4 Now, add statements to output the result of other integer
comparisons
Console.Write(“\n\nInequality:”) ;
Console.Write(“\t (0 != 1) : ” + (nil != max)) ;

Console.Write(“\n\nGreater:”) ;
Console.Write(“\t (0 > 1) : ” + (nil > max)) ;

Console.Write(“\nLess:”) ;
Console.Write(“\t\t (0 < 1) : ” + (nil < max)) ;

Console.Write(“\n\nGreater/Equal:”) ;
Console.Write(“\t (0 >= 0) : ” + (nil >= num)) ;

Console.Write(“\nLess or Equal:”) ;
Console.Write(“\t (1 <= 0) : ” + (max <= nil)) ;
Console.ReadKey() ;

l5 Press Start or F5 to run the application and see the
results produced by each comparison

C#

Comparison

40
Pe

rf
or

m
in

g
op

er
at

io
ns

Assessing logic
The logical operators most commonly used in C# programming
are listed in the table below:

The logical operators are used with operands that have Boolean
values of true or false, or are values that convert to true or false.

The && logical AND operator will evaluate two operands and
return true only if both operands themselves are true. Otherwise,
the && logical AND operator will return false. This is used
in conditional branching where the direction of a program is
determined by testing two conditions – if both conditions are
satisfied, the program will go in a certain direction, otherwise it
will take a different direction.

Unlike the && logical AND operator, which needs both operands
to be true, the || logical OR operator will evaluate its two
operands and return true if either one of the operands itself
returns true. If, however, neither operand returns true, then the
|| logical OR operator will return false. This is useful in C#
programming to perform a certain action if either one of two test
conditions has been met.

The ! logical NOT operator is a unary operator that is used before
a single operand. It returns the inverse value of the given operand,
so if the variable a had a value of true then !a would have a value
of false. The ! logical NOT operator is useful in C# programs to
toggle the value of a variable in successive loop iterations with a
statement like a = !a. This ensures that on each pass the value is
changed, like flicking a light switch on and off.

Operator Operation

&& Logical AND

|| Logical OR

! Logical NOT

The term “Boolean”
refers to a system
of logical thought
developed by the English
mathematician George
Boole (1815-1864).

41

Notice that false &&
false returns false, not
true – demonstrating
the maxim “two wrongs
don’t make a right”.

...cont’d

l1 Start a new C# Console App and name it “Logic”
Console.Title = “Logic” ;

l2 Type this statement to declare two Boolean variables
bool yes = true , no = false ;

l3 Add these statements to output the result of AND logic
Console.Write(“AND Logic:”) ;
Console.Write(“\t (yes && yes) : ” + (yes && yes)) ;
Console.Write(“\n\t\t (yes && no) : ” + (yes && no)) ;
Console.Write(“\n\t\t (no && no) : ” + (no && no)) ;

l4 Now, add statements to output the result of OR logic
Console.Write(“\n\nOR Logic:”) ;
Console.Write(“\t (yes || yes) : ” + (yes || yes)) ;
Console.Write(“\n\t\t (yes || no) : ” + (yes || no)) ;
Console.Write(“\n\t\t (no || no) : ” + (no || no)) ;

l5 Then, add statements to output the result of NOT logic
Console.Write(“\n\nNOT Logic:”) ;
Console.Write(“\t yes = ” + yes) ;
Console.Write(“\t !yes = ” + !yes) ;
Console.Write(“\n\t\t no = ” + no) ;
Console.Write(“\t !no = ” + !no) ;
Console.ReadKey() ;

l6 Press Start or F5 to run the application and see the
results produced by each logical operation

C#

Logic

The value returned
by the ! logical NOT
operator is the inverse
of the stored value –
the stored value itself
remains unchanged.

42
Pe

rf
or

m
in

g
op

er
at

io
ns

Value equality, where
two variables contain
an equal value, is also
known as “equivalence”.

The ternary operator has
three operands – the one
before the ? and those
before and after the :.

Examining conditions
Possibly, the C# programmer’s favorite test operator is the ?:
“ternary” operator. This operator first evaluates an expression for
a true or false condition, then returns one of two specified values
depending on the result of the evaluation. For this reason, it is
also known as the “conditional” operator.

The ?: ternary operator has this syntax:

(test-expression) ? if-true-return-this : if-false-return-this ;

Although the ternary operator can initially appear a little
confusing, it is well worth becoming familiar with this operator as
it can execute powerful program branching with minimal code –
for example, to branch when a variable is not a value of 1:

(variable != 1) ? if-true-do-this : if-false-do-this ;

The ternary operator is commonly used in C# programming to
assign the maximum or minimum value of two variables to a third
variable, for example, to assign a minimum, like this:

c = (a < b) ? a : b ;

The expression in parentheses returns true when the value of
variable a is less than that of variable b – so in this case, the lesser
value of variable a gets assigned to variable c.

Similarly, replacing the < less than operator in the test expression
with the > greater than operator would assign the greater value of
variable b to variable c.

Another common use of the ternary operator incorporates the %
modulus operator in the test expression to determine whether the
parity value of a variable is an odd number or an even number:

(variable % 2 != 0) ? if-true(odd)-do-this : if-false(even)-do-this ;

Where the result of dividing the variable value by 2 does leave a
remainder, the number is odd – where there is no remainder, the
number is even. The test expression (variable % 2 == 1) would
have the same effect, but it is preferable to test for inequality – it’s
easier to spot when something is different than when it’s identical.

43
...cont’d

The ?: ternary operator
can return values of any
data type – numbers,
strings, Booleans, etc.

l1 Start a new C# Console App and name it “Condition”
Console.Title = “Condition” ;

l2 Type these statements to declare and initialize two
integer variables
int a = 8 ;
int b = 3 ;

l3 Next, add these statements to output an appropriate
string with correct grammar for quantity
string verb = (a != 1) ? “ are “ : “ is “ ;
Console.WriteLine(“There” + verb + a +”\n”) ;

l4 Now, add statements to output an appropriate string
correctly describing the parity of each variable value
string parity = (a % 2 != 0) ? “Odd“ : “Even“ ;
Console.WriteLine(a + “ is “ + parity) ;

parity = (b % 2 != 0) ? “Odd“ : “Even“ ;
Console.WriteLine(b + “ is “ + parity) ;

l5 Then, add statements to output a string reporting the
greater of these two variable values
int max = (a > b) ? a : b ;
Console.Write(“\nMaximum is “ + max) ;
Console.ReadKey() ;

l6 Press Start or F5 to run the application and see the
results produced by examining each variable value

C#

Condition

44
Pe

rf
or

m
in

g
op

er
at

io
ns

There are also a
number of “bitwise”
operators, which are
used to perform binary
arithmetic. This is outside
the scope of this book
but there is a section
devoted to binary
arithmetic in our book
C Programming in easy
steps. Those operators
perform in just the same
way in C#.

The * multiply operator is
on a higher row than the
+ addition operator – so
in the expression
a=1+5*3, multiplication
is completed first, before
the addition.

Setting precedence

Category Operator Associativity

Postfix () [] . ++ -- LTR p

Unary
Sign
Prefix

!
+ -
++ --

 P RTL

Multiplicative * / % LTR p

Additive + - LTR p

Comparative < <= > >= LTR p

Equivalence == != LTR p

Conditional && LTR p

Conditional || LTR p

Conditional ?: P RTL

Assignment = += -= *= /= %= P RTL

Comma , LTR p

Operator precedence determines the order in which C# evaluates
expressions. For example, the expression 1 + 5 * 3 evaluates to
16, not 18, because the * multiplication operator has a higher
precedence than the + addition operator. Parentheses can be used
to specify precedence, so that (1 + 5) * 3 evaluates to 18.

When operators have equal precedence, their “associativity”
determines how expressions are grouped. For example, the -
subtraction operator is left-associative, grouping left-to-right
(LTR), so 8 - 4 - 2 is grouped as (8 - 4) - 2 and thus evaluates to 2.
Other operators are right-associative, grouping right-to-left (RTL).

The table below lists common operators in order of precedence,
with the highest-precedence ones at the top. Operators on
the same line have equal precedence, so operator associativity
determines how expressions are grouped and evaluated.

45
...cont’d

It is best to clarify all
expressions by adding
parentheses to group
operations.

l1 Start a new C# Console App and name it “Precedence”
Console.Title = “Precedence” ;

l2 Type this statement to declare an integer variable
int sum ;

l3 Add these statements to initialize the variable with the
result of an ungrouped expression and display that result
sum = 1 + 4 * 3 ;
Console.WriteLine(“Default Order:\t\t” + sum) ;

l4 Next, add statements to assign the result of a grouped
expression and display that result
sum = (1 + 4) * 3 ;
Console.WriteLine(“Forced Order:\t\t” + sum) ;

l5 Add statements to assign the result of a new ungrouped
expression and display that result
sum = 7 - 4 + 2 ;
Console.WriteLine(“\nDefault Direction:\t” + sum) ;

l6 Now, add statements to assign the result of the new
grouped expression and display that result
sum = 7 - (4 + 2) ;
Console.WriteLine(“\nForced Direction:\t” + sum) ;
Console.ReadKey() ;

l7 Press Start or F5 to run the application and see the
results produced by examining each variable value

C#

Precedence

The * multiplication
operator takes
precedence over the
+ addition operator
– so multiplication is
performed first.

The - subtraction
operator and the +
addition operator have
equal precedence
but also have left-to-
right associativity – so
subtraction is performed
first before addition.

46
Pe

rf
or

m
in

g
op

er
at

io
ns

Summary
• Arithmetic operators can form expressions with two operands

for + addition, - subtraction, * multiplication, and / division.

• The % modulus arithmetic operator divides the first operand
by its second operand, then returns the remainder.

• Care must be taken to group expressions within () parentheses
where more than one operator is used.

• The ++ increment and -- decrement operators may be
postfixed or prefixed to modify a single operand by 1.

• The = assignment operator can be combined with an
arithmetic operator to assign the result of an operation.

• Comparison operators can form expressions with two operands
for == equality or for != inequality.

• Comparison operators can form expressions with two operands
for > greater or for < lesser value comparison.

• Equality can also be recognized in comparisons with the
>= greater-or-equal and <= less-or-equal operators.

• The && logical-AND operator will return true only if both
operands are themselves true.

• The || logical-OR operator will return true if either of the two
operands are themselves true.

• The ! logical-NOT operator returns the inverse Boolean value
of a single given operand.

• The ?: ternary operator evaluates a given Boolean expression,
then returns one of two operands depending on the result.

• Operator precedence determines the order in which
expressions are evaluated.

• When operators have equal precedence, their associativity
determines how expressions are grouped for evaluation.

This chapter demonstrates

how statements can evaluate

expressions to determine

the direction in which a C#

program will proceed.

Branching with if

Switching branches

Looping for

Looping while

Iterating for each

Summary

48

50

52

54

56

58

Making statements4

48
M

ak
in

g
st

at
em

en
ts

Avoid nesting more
than three levels of if
statements – to prevent
confusion and errors.

Shorthand can be used
when testing a Boolean
value – so the expression
if(flag == true) can be
written as if(flag).

Branching with if
The C# if keyword performs the basic conditional test that
evaluates a given expression for a Boolean value of true or false –
and its syntax looks like this:

if (test-expression) { statements-to-execute-when-true }

The braces following the test may contain one or more statements,
each terminated by a ; semicolon, but these will only be executed
when the expression is found to be true. When the test is found
to be false, the program proceeds to its next task.

To allow “conditional branching”, an if statement can offer
alternative statements to execute when the test fails by appending
an else statement block after the if statement block, like this:

if (test-expression) { statements-to-execute-when-true }
else { statements-to-execute-when-false }

To test two conditions, the test expression may use the &&
operator – for example, if ((num > 5) && (letter == ‘A’)).

Alternatively, an if statement can be “nested” within another if
statement, so those statements in the inner statement block will
only be executed when both tests succeed – but statements in the
outer statement block will be executed if the outer test succeeds:

l1 Start a new C# Console App and name it “IfElse”
Console.Title = “IfElse” ;

l2 Type these statements to create and initialize two
variables from user input
Console.Write(“Please Enter A Number: ”) ;
double num = Convert.ToDouble(Console.ReadLine()) ;
Console.Write(“Thanks. Now Enter A Letter: ”) ;
char letter = Convert.ToChar(Console.ReadLine()) ;

l3 Next, add a statement to output a message if the user’s
number input exceeds a specified value
if (num >= 6)
{
 Console.WriteLine(“\nNumber Exceeds 5”) ;
 // Nested statement to be inserted here (Step 5).
}

C#

IfElse

49
...cont’d

l4 Now, add a statement to output an alternative message if
the user’s number input is less than the specified value
else
{
 Console.WriteLine(“\nNumber Is 5 Or Less”) ;
}
Console.ReadKey() ;

l5 Insert a statement within the if block to output a message
when the user’s letter input matches a specified value
if (letter == ‘C’)
{
 Console.WriteLine(“Letter Is ‘C’”) ;
}

l6 Press Start or F5 to run the application and enter values
to see the program branch according to your input

Where there is only one
statement to execute
when the test succeeds,
the { } braces may be
omitted – but retaining
them aids code clarity.

50
M

ak
in

g
st

at
em

en
ts

Missing break keywords
in C# case statements
are syntax errors.

Switching branches
The if and else keywords, introduced on pages 48-49, allow
programs to branch in a particular direction according to the
result of a test condition, and can be used to repeatedly test a
variable to match a value – for example, testing for an integer:

if (num == 1) { Console.Write(“Monday”) ; }
else
if (num == 2) { Console.Write(“Tuesday”) ; }
else
if (num == 3) { Console.Write(“Wednesday”) ; }
else
if (num == 4) { Console.Write(“Thursday”) ; }
else
if (num == 5) { Console.Write(“Friday”) ; }

The program will branch in the direction of the match.

Conditional branching with long if-else statements can often
be more efficiently performed using a switch statement instead,
especially when the test expression evaluates just one variable.

The switch statement works in an unusual way. It takes a given
variable value, or expression, then seeks a matching value among
a number of case statements. One or more statements associated
with the matching case statement will then be executed.

When no match is found, no case statements will be executed, but
you may add a default statement after the final case statement to
specify statements to be executed when no match is found. The
syntax of a typical switch statement looks like this:

switch(variable-name)
{
 case value1 : statement ; break ;
 case value2 : statement ; break ;
 case value3 : statement ; break ;
 default : statement ; break ;
}

It is important to follow each case statement with the break
keyword. Unlike other programming languages, C# does not
allow fall-through from one case statement to another – each case
statement must allow control to be handed back in order to exit
the switch block.

Avoid writing lengthy if-
else statements like the
one shown here – where
possible, use a switch
statement instead.

51

A case statement can
also try to match against
a string value – for
example: case : “ABC”.

...cont’d

l1 Start a new C# Console App and name it “Switch”
Console.Title = “Switch” ;

l2 Type this statement to create and initialize an integer
variable
int num = 3 ;

l3 Next, add a statement to declare a string variable
string day ;

l4 Now, add a statement to initialize the string variable
according to the value of the integer variable
switch(num)
{
 case 1 : day = “Monday” ; break ;
 case 2 : day = “Tuesday” ; break ;
 case 3 : day = “Wednesday” ; break ;
 case 4 : day = “Thursday” ; break ;
 case 5 : day = “Friday” ; break ;
 // Default statement to be inserted here (Step 5).
}

l5 Then, insert a final statement into the switch block to
initialize the string variable when no match is found
default : day = “Weekend Day” ; break ;

l6 Finally, add statements to output the assigned value
Console.WriteLine(“Day ” + num + “ : “ + day) ;
Console.ReadKey() ;

l7 Press Start or F5 to run the application and see the
string result of the switch block assignment

C#

Switch

52
M

ak
in

g
st

at
em

en
ts

The updater may
increment the counter
using the ++ operator to
count up, or decrement
the counter using the
-- decrement operator to
count down.

Looping for
A loop is a piece of code in a program that automatically repeats.
One complete execution of all statements contained within the
loop block is known as an “iteration” or “pass”.

The number of iterations made by a loop is controlled by a
conditional test made within the loop. While the tested expression
remains true, the loop will continue – until the tested expression
becomes false, at which time the loop ends.

The three types of loop structures in C# programming are
for loops, while loops, and do-while loops. Perhaps the most
commonly used loop is the for loop, which has this syntax:

for (initializer ; test-expression ; updater) { statements }

The initializer sets the starting value for a counter of the number
of iterations to be made by the loop. An integer variable is used
for this purpose and is traditionally named “i”.

Upon each iteration of the loop, the test expression is evaluated,
and that iteration will only continue while this expression is
true. When the tested expression becomes false, the loop ends
immediately without executing the statements again. On each
iteration, the counter is updated then the statements executed.

Loops may be nested within other loops – so that the inner loop
will fully execute its iterations on each iteration of the outer loop.

initializer

test expression

statements

updater

if true if false

53

On the third iteration of
these loops, the updater
increments the counter
value to 4 – so when it is
next evaluated, the test
expression returns false
and the loop ends.

...cont’d

l4 Inside the for loop block, insert another for loop that will
also make three iterations
 for(int j = 1 ; j < 4 ; j++)
 {
 Console.WriteLine(“\tInner Loop Iteration: “ + j) ;
 }

l5 Press Start or F5 to run the application once more and
now see both loop counters displayed on each iteration

C#

ForLoop

l1 Start a new C# Console App and name it “ForLoop”
Console.Title = “ForLoop” ;

l2 Type these statements to create a loop that will make
three iterations
for(int i = 1 ; i < 4 ; i++)
{
 Console.WriteLine(“Loop Iteration: “ + i) ;
 // Nested loop to be inserted here (Step 4).
}
Console.ReadKey() ;

l3 Press Start or F5 to run the application and see the loop
counter displayed on each iteration

54
M

ak
in

g
st

at
em

en
ts

If you accidentally start
running an infinite loop
– for example:
while(true)
{
 Console.Write(i) ;
 i++ ;
}
press the Ctrl + C keys
to terminate the process.

Looping while
An alternative to the for loop, introduced on pages 52-53, uses
the while keyword, followed by an expression to be evaluated.
When the expression is true, statements contained within braces
following the test expression will be executed. The expression will
then be evaluated again, and the while loop will continue until the
expression is found to be false.

while (test-expression) { statements }

The loop’s statement block must contain code that will affect the
tested expression in order to change the evaluation result to false,
otherwise an infinite loop is created that will lock the program! If
the tested expression is found to be false upon its first evaluation,
the while loop’s statement block will never be executed.

A subtle variation of the while loop places the do keyword before
the loop’s statement block and a while test after it, with this syntax:

do { statements } while (test-expression) ;

In a do-while loop, the statement block will always be executed at
least once – because the expression is not evaluated until after the
first iteration of the loop.

Breaking out of loops
A break statement can be included in any kind of loop to
immediately terminate the loop when a test condition is met. The
break ensures no further iterations of that loop will be executed.

Similarly, a continue statement can be included in any kind of
loop to immediately terminate that particular iteration of the loop
when a test condition is met. The continue statement allows the
loop to proceed to the next iteration:

l1 Start a new C# Console App and name it “WhileLoop”
Console.Title = “WhileLoop” ;

l2 Type these statements to create and initialize an integer
array variable and a regular integer counter variable
int [] nums = new int[10] ;
int i = 0 ;

C#

WhileLoop

55

The position of break
and continue statements
is important – they must
appear after the updater,
to avoid creating an
infinite loop, but before
any other statements, to
prevent their execution.

Remember that the
while statement at the
end of a do-while loop
must be terminated with
a ; semicolon.

...cont’d

l3 Next, add a while loop to assign its incrementing counter
value to an array element and display it on each iteration
while(i < nums.Length)
{
 nums[i] = i ;
 Console.Write(“ | “ + nums[i]) ;
 i++ ;
}
Console.Write(“\n\n“) ;

l4 Now, add a do-while loop to display its decrementing
counter value on each iteration
do
{
 i-- ;
 // Statements to be inserted here (step 6).
 Console.Write(“ | “ + nums[i]) ;
}
while(i > 0) ;
Console.ReadKey() ;

l5 Press Start or F5 to run the application and see both
loop counters displayed on each iteration

l6 In the do-while loop, insert a statement to skip a single
iteration, and a statement to prematurely exit the loop
if(i == 8) { Console.Write(“ | Skipped”) ; continue ; }
if(i == 3) { Console.Write(“ | Done”) ; break ; }

l7 Press Start or F5 to run the application once more, and
now see the do-while loop iterations skipped

Notice how the array’s
Length property is used
to determine the number
of elements it contains.

56
M

ak
in

g
st

at
em

en
ts

The break and continue
keywords can be used in
a foreach statement to
exit the iteration cycle.

Use a for loop if you
need to assign or modify
element values.

Iterating for each
C# provides a special foreach-in statement that allows you to
easily traverse all elements in an array to access all stored values.
This is an “iterator”, rather than a loop structure, so it cannot be
used to assign or modify element values – it can only be used to
read their values. Syntax of a foreach-in statement looks like this:

foreach (data-type variable-name in array-name) { statements }

The foreach keyword must specify a variable of an appropriate
data type to which each element value can be assigned, one by
one, and the in keyword must specify the name of the array:

l1 Start a new C# Console App and name it “ForEach”
Console.Title = “ForEach” ;

l2 Type this statement to create and initialize a string array
string [] websites = new string [5]
{ “Google”, “YouTube”, “Facebook”, “Baidu”, “Yahoo!” } ;

l3 Next, add a statement to display a list heading
Console.WriteLine(“Popular Websites...“) ;

l4 Now, add a foreach statement to display a counter value
and list item value on each iteration
int rank = 1 ;
foreach(string site in websites)
{
 Console.WriteLine(“Position: “ + rank + ”\t” + site) ;
 rank++ ;
}
Console.ReadKey() ;

l5 Press Start or F5 to run the application and see the
iterator display the counter and element values

C#

ForEach

57
...cont’d

A foreach-in statement can also be used to traverse all elements
of a C# “dictionary” that contains associated key-value pairs. The
data types of the key and value must be specified as a comma-
separated pair within < > angled brackets in the declaration:

Dictionary < data-type, data-type > dictionary-name =
 new Dictionary < data-type, data-type > () ;

The foreach keyword must specify a KeyValuePair to which each
key-value pair value can be assigned, one by one, and the in
keyword must specify the name of the dictionary:

l1 Start a new C# Console App and name it “KeyValue”
Console.Title = “KeyValue” ;

l2 Type these statements to create and initialize a dictionary
named “BookList”
Dictionary < string, string > BookList =
 new Dictionary < string, string > () ;
BookList.Add(“Michael Price”, “Microsoft 365”) ;
BookList.Add(“Nick Vandome”,“Windows 11”) ;
BookList.Add(“Mike McGrath”, “Java”) ;

l3 Now, add a statement to display a list heading
Console.WriteLine(“Popular Titles...“) ;

l4 Add a foreach statement to display each key-value pair
foreach(KeyValuePair < string, string > book in BookList)
{
 Console.WriteLine(“Key: “ + book.Key +
 “\tValue: ”+ book.Value + “ in easy steps”) ;
}
Console.ReadKey() ;

l5 Press Start or F5 to run the application and see the
iterator display the dictionary’s key-value pairs

C#

KeyValue

Note that a Dictionary
object has Add() and
Remove() methods,
and has Key and Value
properties.

58
M

ak
in

g
st

at
em

en
ts

Summary
• An if statement evaluates a given test expression for a Boolean

value of true or false.

• Statements contained in braces after an if statement will only
be executed when the evaluation is found to be true.

• Multiple if statements can be nested, so statements in the
inner loop are only executed when both loop tests return true.

• The if and else keywords are used to perform conditional
branching according to the result of a tested expression.

• A switch statement is an alternative form of conditional
branching that matches a case statement to a given value.

• Each case statement must be terminated by the break keyword,
as C# does not allow fall-through.

• The for loop structure has parameters declaring an initializer,
a test expression, and an updater.

• A loop updater may ++ increment a counter to count up, or
may -- decrement a counter to count down.

• A while loop may never execute its statements, but a do-while
loop will always execute its statements at least once.

• A while loop and do-while loop must always have an updater
within their loop body to avoid creating an infinite loop.

• Any type of loop can be immediately terminated by including
a break statement within the loop body.

• A single iteration of any type of loop can be skipped by
including a continue statement within the loop body.

• A foreach-in statement is an iterator that can traverse all
elements of an array to read their values.

• A foreach-in statement can traverse all key-value pairs of a
dictionary to read their values.

This chapter demonstrates

how to create methods that

can be called to execute

statements whenever the C#

program requires them.

Creating function

Passing arguments

Overloading methods

Refactoring code

Summary

60

62

64

66

68

Devising methods5

60
D

ev
is

in
g

m
et

ho
ds

Parameters and
arguments are
demonstrated in the
example on page 62.

Creating function
A C# programmer-specified “function” encloses a section of
reusable code that can be called whenever required by the
program. Local functions can be created in the “Program.cs” file
and can be called to execute their section of code as needed.

Functions can also be created within class structures. These are
referred to as “methods” of the class. For example, the WriteLine()
function is a method of the Console class.

 Functions (a.k.a. methods) provide these three main benefits:

• Modular program code is easier to understand and maintain.

• Tried and tested code can be re-used by other programs.

• The workload on large programs can be more easily shared.

A function is declared in a C# program by specifying the various
elements of its structure with this syntax:

access-specifier return-data-type function-name (parameters)
{
 statements
}

The access specifier determines the visibility of the function to
other classes. The keyword public specifies global accessibility,
whereas private or static keywords specify only local accessibility.

If the function will return a value to the caller, the data type of
that value must be specified. If the function will never return a
value, the void keyword must be specified.

A name must be specified for each programmer-defined function,
adhering to the same naming conventions as variable names.

Optionally, parameters may be specified within parentheses after
the function name to represent “argument” values passed from the
caller. Once defined, a method without parameters may be called
simply by stating its name followed by parentheses.

Variables declared within a function are not, by default, visible to
other parts of the program. The visibility of variables is known as
“variable scope” and variables within a function have only “local”
scope. This means that variables declared in different functions
may be given the same name without conflict.

The use of methods by
other classes is described
and demonstrated in
the chapter on Object
Oriented Programming –
see page 112.

The first part of a
function declaration,
defining its access,
return type, name, and
parameters, is known as
the function “signature”.

61
...cont’d

l1 Start a new C# Console App and name it “Function”
Console.Title = “Function” ;

l2 Type this code to create a function that will output two
text strings, but return nothing to the caller
static void bodyTempC()
{
 Console.WriteLine(“Body Temperature...”) ;
 Console.WriteLine(“Centigrade:\t37ºC”) ;
}

l3 Next, add a function that outputs nothing, but will return
a floating-point value to the caller
static double bodyTempF()
{
 double temperature = 98.6 ;
 return temperature ;
}

l4 Now, add a function that outputs nothing, but will return
an integer value to the caller
static int bodyTempK()
{
 int temperature = 310 ;
 return temperature ;
}

l5 Finally, add statements to call each of the programmer-
specified functions created above
bodyTempC() ;
Console.WriteLine(“Fahrenheit:\t” + bodyTempF() + “ºF”) ;
Console.WriteLine(“Kelvin:\t” + bodyTempK() + “K”) ;
Console.ReadKey() ;

l6 Press Start or F5 to run the application and see the
output featuring the function calls

C#

Function

Each variable can have
the same name as they
have only local scope.

You can use the Windows
Accessories, Character
Map facility to produce
the º degree symbol.

62
D

ev
is

in
g

m
et

ho
ds

Calling a function
without passing required
arguments, or arguments
of the wrong data type,
will cause an error.

Most function calls pass
arguments by value
rather than by reference
or for output.

Passing arguments
Functions may optionally specify one or more parameters as a
comma-separated list within the parentheses of their definition.
Each specified parameter must state the data type it may contain,
and a name by which it may be referenced within the function –
for example, parameters for text and a number, like this:

static void setUser(string name , int age) { statements }

When a function with parameters is called, the caller must
normally pass the correct number of argument values of the
required data type. These are listed within the parentheses of the
calling statement – for example, calling the function above:

setUser(“Alison” , 18) ;

Optionally, the parameter declaration may be assigned a default
value to use if no argument value is passed by the caller. In this
case, the caller may pass, or omit, an argument value:

static void setUser(string name , int age = 21) { statements }

setUser(“Brenda” , 19) ;
setUser(“Christine”) ; // age = 21.

There are three ways to pass arguments into functions:

• By Value – Arguments passed to functions “by value” assign a
copy of the original value to the parameter. Changes made to
the parameter inside the function do not affect the original.

• By Reference – Arguments passed to functions “by reference”
assign the address of the memory location of the original value
to the parameter. Changes made to the parameter inside the
function do affect the original value. Reference arguments
must include the C# ref keyword in both the function call
parentheses and the function definition parameter list.

• For Output – Arguments passed to functions “for output”
assign the memory location address of the argument to the
parameter, to which the function can assign a value. This is
similar to passing by reference except that data is passed from
the function, rather than to the function. Output arguments
must include the C# out keyword in both the function call
parentheses and the function definition parameter list. This is
useful to return more than one value from a function.

63The default parameter
value is not used here,
as the caller passes in an
argument value.

...cont’d

l1 Start a new C# Console App and name it “Parameter”
Console.Title = “Parameter” ;

l2 Type these statements to declare two variables
double weight ;
string num ;

l3 Add this function that will output a double value and
return a string value
static string getWeight(out double theWeight)
{
 theWeight = 10 ;
 return “Ten” ;
}

l4 Next, add a function that will return a multiplied value of
its parameter argument
static double lbToKg(double pounds = 5)
{ return (pounds * 0.45359237) ; }

l5 Now, add a function that will assign a divided value to its
parameter reference argument but return nothing
static void kgToLb(ref double weight)
{ weight = (weight / 0.45359237) ; }

l6 Finally, add statements to pass arguments to each of the
functions declared above
num = getWeight(out weight) ;
Console.WriteLine(num +“ lb = ” + lbToKg(weight) +“ kg”) ;
kgToLb(ref weight) ;
Console.WriteLine(num + “ kg = ” + weight + “ lb”) ;
Console.ReadKey() ;

l7 Press Start or F5 to run the application and see the
output featuring arguments passed to method parameters

C#

Parameter

Both the num and
weight variables are
initialized by the
getWeight() function.
The value of weight is
set in the function, as it
is passed by reference.
The variable num is
initialized using the
value returned from the
function.

64
D

ev
is

in
g

m
et

ho
ds

Overloading methods
Method “overloading” allows methods of the same name to
happily co-exist in the same program, providing their parameters
differ in number, data type, or both number and data type. The
compiler matches a method call to the correct version of the
method by recognizing its parameter number and data types – a
process known as “method resolution”.

Where a parameter represents the same value as that in another
method, the parameters should have the same name. Parameters
with the same name should appear in the same position in
each method’s parameter list, but you should not use ref or out
modifiers to overload methods.

It is useful to create overloaded methods in a custom class when
their tasks are similar, yet subtly different. A class is created
using the class keyword followed by a name of your choice. The
methods of the class can then be added as function declarations
within { } curly brackets following the class name.

In order to use methods of a custom class, a new instance of the
class object must first be created using this syntax:

Class-name instance-name = new() ;

The methods can then be called by dot-suffixing the method
name to the instance name.

l1 Start a new C# Console App and name it “Overload”
Console.Title = “Overload” ;

l2 Declare two floating-point variables and an instance of a
class named “Compute” (to be created later in Step 7)
double num ;
double area ;
Compute size = new() ;

l3 Add statements to initialize the first variable from input
Console.Write(“Please Enter Dimension In Feet: “) ;
num = Convert.ToDouble(Console.ReadLine()) ;

l4 Now, initialize the second variable by calling a method
that accepts only one argument, then displays its value
area = size.Zone(num) ;
Console.WriteLine(“\nCircle:\t\tArea = “+area+“ sq.ft.”) ;

C#

Overload

Remember that the
ReadLine() method
returns a string value
– so this must be
converted in order to
perform arithmetic.

65The class block is a “type
declaration”, whereas
the rest of the code are
“top-level statements”.
Order is important, as
top-level statements
must precede any type
declarations – so the
class block must appear
at the end of this code.

The value passed to the
char c parameter is never
used here – it is included
merely to determine
which method should be
called.

...cont’d

l5 Assign a new value to the second variable by calling the
function that accepts two arguments, then display its value
area = size.Zone(num , num) ;
Console.WriteLine(“Square:\t\tArea = “+area+“ sq.ft.”) ;

l6 Assign a new value to the second variable by calling the
function that accepts three arguments, then display its value
area = size.Zone(num , num , ‘T’) ;
Console.WriteLine(“Triangle:\tArea = “+area+“ sq.ft.”) ;
Console.ReadKey() ;

l7 Finally, add the custom class containing the three methods
class Compute
{
 public double Zone(double width)
 {
 double radius = width / 2 ;
 return ((radius * radius) * 3.141593) ;
 }

 public double Zone(double width, double height)
 {
 return (width * height) ;
 }

 public double Zone(double width, double height , char c)
 {
 return ((width / 2) * height) ;
 }
}

l8 Press Start or F5 to run the application, then enter a
number and see the output from the overloaded methods

66
D

ev
is

in
g

m
et

ho
ds

The two calls to write
output in Step 3 could
be refactored into a
single WriteLine() call
for greater efficiency.

Refactoring code
Functions can call themselves recursively, to repeatedly execute
the statements contained in their function body – much like a
loop. As with loops, a recursive function must contain an updater
and a conditional test to call itself again, or stop repeating when a
condition is met. The syntax of a recursive function looks like this:

return-data-type function-name (parameter-list)
{
 statements-to-be-executed ;
 updater ;
 conditional-test-to-recall-or-exit ;
}

The updater will change the value of a passed argument – so
subsequent calls will pass the adjusted value back to the function:

l1 Start a new C# Console App and name it “Refactor”
Console.Title = “Refactor” ;

l2 Add this recursive function to return the factorial value of
a positive integer argument
static int factorial(int num)
{
 int result ;
 if(num == 1)
 {
 result = 1 ;
 }
 else
 {
 result = (factorial(num - 1) * num) ;
 }
 return result ;
}

l3 Next, add a method to display a range of integers and
their computed factorial values
static void computeFactorials(int num, int max)
{
 while(num <= max)
 {
 Console.Write(“Factorial Of “ + num + “ : “) ;
 Console.WriteLine(factorial(num)) ;
 num++ ;
 }
}

C#

Refactor

A factorial is the product
of multiplying a positive
integer by all lesser
positive integers.

67

If you accidentally run an
infinite recursive function,
press the Ctrl + C keys
to terminate the process.

...cont’d

l4 Now, add statements to pass a range of argument values
to be computed for display
computeFactorials(1 , 8) ;
Console.ReadKey() ;

l5 Press Start or F5 to run the application to see the output

The output lists factorial values (factorial 3 is 3x2x1=6, etc.)
but the program can be optimized by refactoring the recursive
factorial() method. This method does not need a variable if
written with the ternary operator:

l6 Edit the factorial() method listed in Step 2 to make it
more efficient
static int factorial(int num)
{
 return (num == 1) ? 1 : (factorial(num - 1) * num) ;
}

l7 Press Start or F5 to run the application once more and
see the same output, produced more efficiently

A recursive method
generally uses more
system resources than a
loop – but it can make
the code more readable.
Modern compilers
perform optimization, so
it is better to focus on
writing readable code.

68
D

ev
is

in
g

m
et

ho
ds

Summary
• A programmer-specified function is a modular section of code

that can be called to execute its statements whenever required.

• It is easier to understand, maintain, re-use, and share modular
program code that contains methods.

• A function declaration must at least specify a return data type
and the function name.

• Methods not intended for use by other classes must be
initialized in memory by the static keyword.

• Optionally, a function declaration may include a parameter list.

• Variables declared within a function have local scope, so are
not accessible from outside that function.

• Arguments passed by value assign a copy of the original value
to the function parameter, so the original will not be affected.

• Arguments passed by reference assign a memory location to
the function parameter, so the original value will be affected.

• Arguments passed for output retrieve a value from the function
and are useful to return more than one value.

• Method overloading allows methods of the same name to
co-exist in the same program if their parameters differ.

• The compiler matches calls to overloaded methods by
recognizing their parameter number and data types.

• Parameters representing the same values in overloaded
methods should have the same name and the same position.

• The reference ref and output out modifiers should not be used
with overloaded methods as their sole difference.

• Code can be refactored for optimum efficiency by reducing the
number of variables and function calls.

• Recursive functions repeatedly execute their statements, so
must contain an updater to stop repeating at some point.

This chapter demonstrates

how to manipulate and

format text strings within

C# programs.

Discovering string features

Manipulating strings

Joining and comparing strings

Copying and swapping strings

Finding substrings

Formatting strings

Formatting date strings

Summary

70

72

74

76

78

80

82

84

Handling strings6

70
H

an
dl

in
g

st
ri

ng
s

Note that some of these
strings include ‘ single
quotes within the outer
“ double quote marks.

Discovering string features
The C# String class library provides properties and methods
that enable a program to easily discover features of a text string.
Usefully, the String.IsNullOrWhiteSpace() and String.IsNullOrEmpty()
methods can be used to validate user input. These are static
methods, so are written dot-suffixed to the String class name.

Other properties and methods operate on an “instance” of the
class, so are written dot-suffixed to a string variable name.
Instance methods can report string size and query its contents.
The Length property returns an integer that is the number of
characters within the string, including spaces. Additionally, the
StartsWith(), EndsWith(), and Contains() methods can each accept
a string argument to match within the string variable value. When
a match is found, they return true, otherwise they return false:

l1 Start a new C# Console App and name it “Features”
Console.Title = “Features” ;

l2 Type these statements requesting user input to initialize a
string variable
Console.Write(“Please Enter Text: ”) ;
string text = Console.ReadLine() ;

l3 Next, add a conditional test to ensure the user entered
input before hitting the Enter key
if (String.IsNullOrWhiteSpace(text))
{
 Console.WriteLine(“\nERROR: No Text Found!”) ;
}
else
{
 // Statements to be inserted here (Steps 4-7).
}
Console.ReadKey() ;

l4 Now, insert statements to report the length of the string
Console.WriteLine(“\nThanks. You Entered:\n’”+text+”’”) ;
Console.WriteLine(“\nText Length: ” + text.Length) ;

l5 Insert another statement to test how the string begins
string query = text.StartsWith(“C#”) ? “Does” : “Does Not” ;
Console.WriteLine(“Text ” + query + “ Start With ‘C#’”) ;

C#

Features

String class methods
can be written using the
String. class prefix or its
string. alias prefix – our
examples use String to
differentiate from the
string data type.

71

String values are often
referred to as “literals”,
as they comprise
characters to be read
literally, as text.

Notice that the ?: ternary
operator is used here to
assign an appropriate
string value.

...cont’d

l6 Next, insert a statement to test how the string ends
query = text.EndsWith(“steps”) ? “Does” : “Does Not” ;
Console.WriteLine(“Text ” + query + “ End With ‘steps’”) ;

l7 Now, insert a statement to test what the string contains
query = text.Contains(“easy”) ? “Does” : “Does Not” ;
Console.WriteLine(“Text ” + query + “ Contain ‘easy’”) ;

l8 Press Start or F5 to run the application, and hit Enter
without input to see the error message

l9 Press Start or F5 to run the application again, type
input, then hit Enter to discover input string features

Methods with a String.
(or string.) prefix are
using the String class
itself, whereas dot-
suffixed methods use an
“instance” object of the
class – see Chapter 9.

72
H

an
dl

in
g

st
ri

ng
s

Manipulating strings
The C# String class library provides methods that enable a
program to manipulate text strings. The ToLower() and ToUpper()
methods can be dot-suffixed to a string variable to change all
characters within the string to lowercase, or to uppercase.

Similarly, the TrimStart(), TrimEnd(), and Trim() methods can be
used to remove whitespace or other characters from a string at
its start, end, or both start and end. By default, these methods
will remove whitespace from the string, but you can alternatively
specify a character to be removed as an argument to the method.

Conversely, the PadLeft() and PadRight() methods can be used to
add whitespace or other characters onto a string at its start or end.
Their arguments must specify the total character length of the
padded string, and a padding character unless default whitespace
padding is required. If you want to add padding onto both start
and end, the methods can be “chained” as PadLeft().PadRight()
stating each padding length argument, and character if required:

l1 Start a new C# Console App and name it “Manipulate”
Console.Title = “Manipulate” ;

l2 Type these statements requesting user input to initialize a
string variable
Console.Write(“Please Enter Text: ”) ;
string text = Console.ReadLine() ;

l3 Add statements to display the user input string and report
its length
Console.Write(“\nThanks. You Entered:\n’” + text + ”’”) ;
Console.WriteLine(“\t\tText Length: ” + text.Length) ;

l4 Remove leading and trailing whitespace, then display the
manipulated version and report its length
text = text.Trim() ;
Console.Write(“\nTrimmed:\t’” + text + ”’”) ;
Console.WriteLine(“\tText Length: ” + text.Length) ;

l5 Next, add statements to create and display an uppercase
version of the trimmed string
string upper = text.ToUpper() ;
Console.WriteLine(“\nUpperCase:\t’” + upper + ”’”) ;

C#

Manipulate

It is a good idea to
always use Trim()
to remove spaces
accidentally added by the
user when typing input.

73

You can also specify
multiple characters
to be trimmed as a
comma-separated list
of arguments to the
TrimStart(), TrimEnd(), or
Trim() methods.

Here, all three strings
are expanded to a total
width of 40 characters.

...cont’d

l6 Now, create and display a lowercase version of the
trimmed string
string lower = text.ToLower() ;
Console.WriteLine(“LowerCase:\t’” + lower + ”’”) ;

l7 Then, further manipulate all three strings to add
whitespace and character padding
upper = upper.PadLeft(40) ;
lower = lower.PadRight(40 , ‘#’) ;
text = text.PadLeft(30 , ‘*’).PadRight(40 , ‘*’) ;

l8 Add statements to display all three strings to see the
padded whitespace and padded characters
Console.WriteLine(“\nPadded Left:\t’” + upper + “’”) ;
Console.WriteLine(“Padded Right:\t’” + lower + “’”) ;
Console.WriteLine(“Padded Both:\t’” + text + “’”) ;

l9 Finally, add statements to display trimmed versions of two
padded strings
Console.WriteLine(“\nTrimmed Start:\t’” +
 upper.TrimStart() + “’”) ;
Console.WriteLine(“Trimmed End:\t’” +
 text.TrimEnd(‘*’) + “’”) ;
Console.ReadKey() ;

l10 Press Start or F5 to run the application and enter a string
with leading and trailing space to see it manipulated

When padding both
left and right you must
individually specify by
how much to expand the
string in each direction
– in this case, expanding
from 20 to 30 characters
left, then from 30 to 40
characters right.

74
H

an
dl

in
g

st
ri

ng
s

Joining and comparing strings
When the + operator is used to concatenate (join) strings in an
assignment, the combined strings get stored in the string variable.
But when used in the Write() or WriteLine() methods, the strings
are only combined in output – the variable values are unchanged.

The C# String class library provides a String.Concat() method
that can be used to join strings as an alternative to using the +
operator. This method accepts a comma-separated list of string
arguments to be joined into a single string.

Similarly, the String.Join() method can also be used to join
strings as an alternative to using the + operator. This, too, accepts
a comma-separated list of string arguments to be joined, but its
first argument usefully specifies a separator string. It places this
separator between each string argument in the joined string. The
separator might be a single space to separate words, or perhaps an
HTML tag to separate text, or any other string value.

String comparisons can be made for alphabetic order by specifying
two string arguments to the String.Compare() method. This
returns an integer denoting whether the alphabetic relationship of
the first string to the second is before (-1), after (1), or equal (0).
There is also a CompareTo() method that provides the same
results, but this can be dot-suffixed onto the first string, and the
second string specified as its argument.

As with numeric comparisons, the == operator can be used to test
for string equality. Alternatively, the Equals() method can be dot-
suffixed onto the first string, and the second string specified as its
argument. Either will return a true or false Boolean result.

l1 Start a new C# Console App and name it “Joined”
Console.Title = “Joined” ;

l2 Type this statement to create and initialize a string array
variable simply named “a”
string [] a = new string[3] { “Alpha”, ”Bravo”, ”Charlie” } ;

l3 Next, assign a concatenated version of the first two array
element values to a string variable and display its value
string s = String.Concat(a[0] , a[1]) ;
Console.WriteLine(“Concatenated:\t” + s) ;

C#

Joined

The examples in this
book use the + operator
for concatenation rather
than String.Concat()
as it provides better
readability without any
loss of performance.

75

Notice how only the
array name needs to
be specified as the
argument to join all
three array elements.

Two alternative methods
are used here to
compare strings and to
test for equality.

...cont’d

l4 Assign a joined version of the first two array elements and
space separator to the string variable, then display its value
s = String.Join(“ “ , a[0] , a[1]) ;
Console.WriteLine(“Joined:\t\t” + s) ;

l5 Assign a joined version of all three array elements and
tag separator to the string variable, then display its value
s = String.Join(“
“ , a) ;
Console.WriteLine(“\nHTML:\t” + s +”\n”) ;

l6 Next, add statements to compare, in turn, all three array
elements for alphabetic order
int num = String.Compare(a[0] , a[1]) ;
Console.WriteLine(a[0] + ” v “ + a[1] + ”:\t” + num) ;

num = String.Compare(a[2] , a[1]) ;
Console.WriteLine(a[2] + ” v “ + a[1] + ”:\t” + num) ;

num = a[1].CompareTo(a[1]) ;
Console.WriteLine(a[1]+ ” v “+a[1]+”:\t” + num+“\n”) ;

l7 Finally, test the array element values for equality
bool flag = (a[0] == a[1]) ;
Console.WriteLine(a[0]+” == “+a[1]+”:\t\t” + flag) ;
flag = a[2].Equals(a[2]) ;
Console.WriteLine(a[2]+” == “+a[2]+”:\t\t” + flag) ;
Console.ReadKey() ;

l8 Press Start or F5 to run the application to see the joined
strings and comparison results

You can add or remove
the \t escape sequences
to format the output to
your liking.

76
H

an
dl

in
g

st
ri

ng
s

Copying with an =
assignment produces
two string variables
that contain the same
value and reference the
same memory location,
whereas copying with
the String.Copy()
method produces two
string variables that
contain the same value
but reference different
memory locations.

Copying and swapping strings
The C# String class library provides a String.Copy() method that
can be used to copy one string to another string as an alternative
to using the = assignment operator. This method accepts the
string to be copied as its argument. Perhaps more usefully, the
CopyTo() method can be dot-suffixed onto a string variable to
copy its contents into a char character array. This requires four
arguments to specify the index number from which to start
copying in the source string, the name of the char array, the index
number at which to start copying in the destination char array,
and the number of characters to copy.

Other methods can be dot-suffixed to a string variable to swap its
contents. The Remove() method requires an integer argument to
specify the index number at which to begin removing characters
from the string. This will remove all characters from the specified
index position up to the end of the string, unless you add a second
argument to specify the number of characters to be removed.

Conversely, the Insert() method requires an integer argument to
specify the index number at which to begin inserting characters
into the string, and an argument specifying the string to insert.
The Replace() method simply requires two string arguments
to specify a substring to seek within the string, and a string to
replace that substring when a match is found:

l1 Start a new C# Console App and name it “Copied”
Console.Title = “Copied” ;

l2 Type these statements to create and initialize two string
variables with the names of two Maserati car models
string car1 = “Ghibli” ;
string car2 = “GranTurismo” ;

l3 Next, display the original values contained in each variable
Console.Write(“Original:”) ;
Console.WriteLine(“\tCar 1: ”+ car1 +“ \t\tCar 2: “ + car2) ;

l4 Now, copy the value of the second string variable into the
first string variable and display their modified values
car1 = String.Copy(car2) ;
Console.Write(“\nCopied:”) ;
Console.WriteLine(“\tCar 1: ”+ car1 + “\tCar 2: “ + car2) ;

C#

Copied

77

The char array must be
of the same size as the
string to be copied –
use the string’s Length
property to specify the
size of the char array.

The fifth element of an
array is at index position
4 in a zero-based index.

...cont’d

l5 Initialize an integer variable with the length of the first
string variable, then create a character array of that length
int num = car1.Length ;
char [] model = new char [num] ;

l6 Next, copy the first string variable into the character array,
then display a space-separated list of the element contents
car1.CopyTo(0 , model , 0 , num) ;
Console.Write(“\nCharacter Array:”) ;
foreach(char c in model) { Console.Write(c + “ “) ; }

l7 Now, remove the end of the first string variable, starting
from its fifth element, and display the modified value
car1 = car1.Remove(4) ;
Console.WriteLine(“\n\nRemoved... \tCar 1: ” + car1) ;

l8 Insert two strings into the first string variable, at its
beginning and end, then display the modified value
car1 = car1.Insert(0 , “Maserati ”) ;
car1 = car1.Insert(13 , “Cabrio”) ;
Console.WriteLine(“\nInserted... \tCar 1: ” + car1) ;

l9 Finally, replace a substring within the first string variable,
and once more display the modified value
car1 = car1.Replace(“GranCabrio” , “Quattroporte”) ;
Console.WriteLine(“\nReplaced... \tCar 1: ” + car1) ;
Console.ReadKey() ;

l10 Press Start or F5 to run the application to see the copied
and swapped strings

78
H

an
dl

in
g

st
ri

ng
s

Finding substrings
The C# String class library provides a number of methods that can
be dot-suffixed to a string variable to seek a string within a string
(i.e. a “substring”). The IndexOf() method requires the substring
as its argument and, if found, returns the index position of the
substring within the searched string. Otherwise, it will return -1.
The IndexOf() method searches forward, from left-to-right, and
returns the index position of the first occurrence of the substring.
It has a companion LastIndexOf() method that works in just the
same way, but searches backward, from right-to-left.

Similarly, there is an IndexOfAny() method and its companion
LastIndexOfAny() method that require a character array argument.
These seek any character of the specified array within a string, and
return the index position of the first occurrence, or -1 otherwise.

You can also dot-suffix a Substring() method to a string variable if
you want to extract a copy of a substring from within that string.
This method requires two arguments to specify the index position
at which to begin copying, and the number of characters to copy:

l1 Start a new C# Console App and name it “Substring”
Console.Title = “Substring” ;

l2 Add this function to report the result of a substring
search
static void report(int pos , string sub)
{
 if(pos != -1)
 { Console.WriteLine(“‘“ + sub + ”’ Found At “ + pos) ; }
 else
 { Console.WriteLine(“‘“ + sub + ”’ Not Found!“) ; }
}

l3 Now, initialize a string variable, then display its value and
length
string text = “My dog is a cute dog” ;
Console.WriteLine(text + ”\tLength: “ + text.Length) ;

l4 Next, request user input to initialize another string
variable with a substring to seek
Console.WriteLine(“\nPlease Enter A Substring To Seek: ”) ;
string sub = Console.ReadLine() ;

C#

Substring

The position reported
when a substring is
found is the index
position of the first
character of that
substring within the
searched string –
whether searching
forward or backward.

79

The CopyTo() method
is described and
demonstrated in the
previous example on
pages 76-77.

...cont’d

l5 Create a character array and copy the entire substring
value into the character array
char [] arr = new char[sub.Length] ;
sub.CopyTo(0 , arr , 0 , sub.Length) ;

l6 Then, seek the first occurrence of the substring and call
the function to report the search result
int pos = text.IndexOf(sub) ;
report(pos , sub) ;

l7 Now, seek the last occurrence of the substring and report
the result
pos = text.LastIndexOf(sub) ;
report(pos , sub) ;

l8 Next, seek the first occurrence of any character of the
substring and report the result
pos = text.IndexOfAny(arr) ;
report(pos , text.Substring(pos , 1)) ;

l9 Finally, seek the last occurrence of any character of the
substring and report the result
pos = text.LastIndexOfAny(arr) ;
report(pos , text.Substring(pos , 1)) ;
Console.ReadKey() ;

l10 Press Start or F5 to run the application, then enter a
substring to seek and see the reported results

Notice that a copy of
the located character
is extracted from the
original string using the
Substring() method for
output in the report.

80
H

an
dl

in
g

st
ri

ng
s

The C# specifications
provide further string
formatting specifier
options in addition to
the commonly used ones
shown here.

Formatting strings
In C# every object has a ToString() method that returns a string
representation of that object. This means that the ToString()
method can be dot-suffixed to any numeric variable to get its
value represented in string format. The ToString() method can,
optionally, accept a string argument to specify how the string
version should be formatted. Common specifiers are listed below:

The C# String class library provides a String.Format() method
that uses the same specifiers to also produce values represented
in string format. This requires a string argument to specify the
format, which may include “placeholders”, and an argument list to
be substituted for each placeholder in the output string.

Each placeholder can be numbered sequentially (starting at zero)
within { } braces, to match the list position of the substitution
argument. For example, {0} matches the first argument in the
substitution argument list, {1} matches the second, and so on.
Additionally, the number may be followed by a : colon and one
of the format specifiers in the table above – to specify how the
substituted value should appear in its string – for example, {0:G}.

Data strings that contain separators, such as a comma-separated
list of data retrieved from a database query, can be easily broken
into individual items of data by dot-suffixing the Split() method
to a string variable. The individual strings can be assigned to a
string array variable, and could then be formatted in output by the
String.Format() method if required.

Specifier Returns

G General

F Fixed Point

N Number (with comma-separated thousands)

C Currency (prevailing on your system)

P Percentage (multiplied by 100)

00.0000 Zero Padding

Multiple placeholders
in one string can be
numbered alike – if you
want each one to be
substituted by the same
list argument value.

81

The argument to the
Split() method must be
a single char character –
enclosed in single quotes.

You can use the +
concatenation operator
for formatting, but many
prefer String.Format()
for easily readable code.

...cont’d

l1 Start a new C# Console App and name it “Format”
Console.Title = “Format” ;

l2 Initialize a numeric variable, then use the ToString()
method to output its value as a currency string format
double sum = 2500 ;
Console.WriteLine(“Currency String: “ + sum.ToString(“C”)) ;

l3 Next, use the String.Format() method to output the same
numeric value in various common string formats
Console.Write(String.Format(“\nGeneral:\t {0:G}” , sum)) ;
Console.Write(String.Format(“\nFixed Point:\t {0:F}”, sum)) ;
Console.Write(String.Format(“\nNumber:\t\t {0:N}” , sum)) ;
Console.Write(String.Format(“\nCurrency:\t {0:C}” , sum)) ;

l4 Now, reduce the numeric value, then output it in a
percentage string format and with padded zeros
sum /= 1000 ;
Console.Write(String.Format(“\nPercentage:\t {0:P}”, sum)) ;
Console.Write
(String.Format(“\nZero Padded:\t {0:00.0000} \n”, sum)) ;

l5 Then, create a comma-separated string list and split it into
individual elements of a string array variable for output
string data = “Mike,McGrath,Author” ;
string [] items = data.Split(‘,’) ;
foreach (string item in items)
{ Console.Write(String.Format(“\n* {0}” , item)) ; }
Console.ReadKey() ;

l6 Press Start or F5 to see the formatted string output

The specifier letters may
be written as either
uppercase or lowercase.

C#

Format

82
H

an
dl

in
g

st
ri

ng
s

IntelliSense is an
intelligent code
completion tool that is
built into Visual Studio.
You can use IntelliSense
to choose methods and
properties – for example,
type DateTime.Now. and
select from the pop-up
list that appears.

Formatting date strings
The C# DateTime class library provides methods and properties
to easily work with dates and times. Its Now property returns a
DateTime object of the current local date and time of your system.
Alternatively, you can create a DateTime object using the new
keyword, and specifying a date and time as a comma-separated
list of arguments. Many methods and properties can be dot-
suffixed to any DateTime object to specify its format, or to extract
specific components of the date or time, or to modify its value.
For example, the DayOfWeek property supplies the day name, the
ToShortString() method supplies the date in number form, and the
AddYears() method can modify the year component.

The String.Format() method, introduced in the previous example
on pages 80-81, also has these specifiers that can be used to
determine the format of dates and times in output:

Specifier Returns Example

d Short date 7/4/2023

D Long date Tuesday, July 4, 2023

t Short time 8:15 AM

T Long time 8:15:30 AM

f Full datetime Tuesday, July 4, 2023 8:15 AM

F Full+seconds Tuesday, July 4, 2023 8:15:30 AM

M Month+day July 4

Y Month+year July 2023

dd Day number 04

dddd Day name Tuesday

HH Hour 0-23 08

mm Minute 15

ss Second 30

YYYY Year 2023

The C# specifications
provide further date and
time formatting specifier
options in addition to
the commonly used ones
shown here.

83
...cont’d

l1 Start a new C# Console App and name it “DateFormat”
Console.Title = “DateFormat” ;

l2 Initialize a DateTime object and display its value
DateTime now = DateTime.Now ;
Console.Write(“Current Date And Time: “+ now) ;

l3 Next, display specific components of the DateTime object
Console.Write(“\nDay Name: “+ now.DayOfWeek) ;
Console.Write(“\nDate Only: “+ now.ToShortDateString()) ;
Console.Write(“\nTime Only: “+ now.ToShortTimeString()) ;

l4 Modify the DateTime object and display its new value
now = now.AddYears(4) ;
Console.Write(“\n\nFuture Date: “+ now) ;

l5 Now, create a new DateTime object and display its value
DateTime dt = new DateTime(2025, 7, 4, 8, 15, 30) ;
Console.Write(“\n\nSet Date And Time: {0:f}“, dt) ;

l6 Display specific components of the new DateTime object
Console.Write(“\nDay Name: {0:dddd}“, dt) ;
Console.Write(“\nLong Date: {0:D}“, dt) ;
Console.Write(“\nLong Time: {0:T}“, dt) ;
Console.ReadKey() ;

l7 Press Start or F5 to run the application and see the
formatted date and time output

C#

DateFormat

You need only specify
the date components
when creating a new
DateTime object – the
time will automatically
be set to 12:00 AM
(midnight).

84
H

an
dl

in
g

st
ri

ng
s

Summary
• Class library static methods, such as String.IsNullOrEmpty(),

are dot-suffixed onto the String class library name.

• String values can be joined using the String.Concat() and String.

Join() methods, or by using the + concatenation operator.

• String comparisons can be made for alphabetic order using the
String.Compare() method.

• A value can be copied from one string variable to another
using the String.Copy() method, or the = assignment operator.

• The String.Format() method can be used to format both
numeric and date strings in output.

• The DateTime class library provides methods and properties,
such as Now, to work with date and time strings.

• Instance methods and properties, such as Contains() and
Length, are dot-suffixed onto string variable names.

• The character case of a string value can be changed using the
ToLower() and ToUpper() methods.

• Whitespace or other characters can be removed from a string
value using the TrimStart(), TrimEnd(), and Trim() methods.

• Whitespace or other characters can be added to a string value
using the PadLeft() and PadRight() methods.

• String comparisons can be made using the CompareTo() and
Equals() methods, or the == equality operator.

• A string value can be copied from a string variable into a char
array using the CopyTo() method.

• The contents of a string variable can be swapped using the
Remove(), Insert(), and Replace() methods.

• A substring can be sought using IndexOf(), LastIndexOf(),
IndexOfAny(), LastIndexOfAny(), and Substring() methods.

• Every object has a ToString() method that returns a string
representation, which can be formatted in output.

This chapter demonstrates

how C# programs can

store data in text files, and

retrieve data from text files.

Writing a file

Appending to a file

Reading text and lines

Streaming lines

Manipulating input and output

Summary

86

88

90

92

94

96

Accessing files7

86
A

cc
es

si
ng

 fi
le

s

The \r\n\t escape
sequence is a carriage
return, a newline, and
a tab.

Writing a file
The C# System.IO.File class library provides methods that enable a
program to easily write text into a file on your computer.

The File.WriteAllText() method simply requires two arguments
to specify the text file path and the string to write. Backslash
characters in the path string must be escaped to avoid an error.

If you would like to ensure the specified text file does not already
exist, you can first test for its existence by specifying its path as
the argument to the File.Exists() method. This will return true
when the file is found, otherwise it will return false.

In order to ensure the text file was written successfully, it is
worthwhile wrapping the File.WriteAllText() call in a try-catch
block. A statement confirming success can be included in the
try part of the block, and a statement to advise of failure can be
included in the catch part of the block:

l1 Start a new C# Console App and name it “WriteText”
Console.Title = “WriteText” ;

l2 Add these statements to initialize two variables –
inserting your own user name where indicated in the path
// Edit the line below to include your own user name.
string path = “C:\\Users\\username\\Desktop\\poem.txt” ;

string poem = “\r\n\tI never saw a man who looked” ;
poem += “\r\n\tWith such a wistful eye” ;
poem += “\r\n\tUpon that little tent of blue” ;
poem += “\r\n\tWhich prisoners call the sky” ;

l3 Next, add a statement to test if a file already exists of the
specified path and filename
if(File.Exists(path))
{
 Console.WriteLine(“File Already Exists: “ + path) ;
}
else
{
 // Statements to be inserted here (Step 4).
}
Console.ReadKey() ;

C#

WriteText

87

Catching exceptions with
the try-catch block is
fully described in
Chapter 8, dealing with
problem solving – see
pages 106-107.

...cont’d

l4 Now, insert statements that attempt to write a text file
and confirm success, or advise of failure
 try
 {
 File.WriteAllText(path , poem) ;
 Console.WriteLine(“File Written: “ + path) ;
 }
 catch(Exception error)
 {
 Console.WriteLine(error.Message) ;
 }

l5 Press Start or F5 to run the application and see a text file
written on your Desktop

l6 Run the app again – to see that the file already exists

l7 Edit the path to a non-existing location, then run
the app once more to see the error message

88
A

cc
es

si
ng

 fi
le

s

The \r\n character
return, newline escape
sequences can be
omitted from the
string array, as the
WriteAllLines() method
automatically writes each
element on new lines.

Appending to a file
The C# System.IO.File class library provides a WriteAllLines()
method that can be used to write the contents of a string array to
a text file, with each element appearing on a separate line, and a
try-catch block can ensure the text file was written successfully.

Additionally, the System.IO.File class has an AppendAllText()
method, which can be used to add text to an existing file, and the
File.Exists() method can ensure that the file first exists:

l1 Start a new C# Console App and name it “AppendText”
Console.Title = “AppendText” ;

l2 Add these statements to initialize three variables –
inserting your own user name where indicated in the path
string path = “C:\\Users\\username\\Desktop\\oscar.txt” ;

string [] poem = new string []
{
 “\tIn Debtors’ Yard the stones are hard” ,
 “\tAnd the dripping wall is high”
} ;

string attrib = “\r\n\tThe Ballad Of Reading Gaol ” ;
attrib += “(Oscar Wilde 1898)” ;

l3 Next, add a statement to test if a file already exists of the
specified path and filename
if(File.Exists(path))
{
 // Statements to be inserted here (Step 4).
}
else
{
 // Statements to be inserted here (Step 5).
}
Console.ReadKey() ;

l4 Now, insert statements that attempt to append text if the
file already exists, and advise of success
 File.AppendAllText(path , attrib) ;
 Console.WriteLine(“Appended To File: “ + path) ;

C#

AppendText

+

89

After its first run, this
application will append
text each time it is run.

As with WriteAllText(),
the WriteAllLines()
method requires the text
file path and string to
write as its arguments.

...cont’d

l7 Run the application once more and see a confirmation
appear and see text now get appended to the file

l5 Then, insert statements that attempt to write a text file
and confirm success, or advise of failure
 try
 {
 File.WriteAllLines(path , poem) ;
 Console.WriteLine(“File Written: “ + path) ;
 }
 catch(Exception error)
 {
 Console.WriteLine(error.Message) ;
 }

l6 Press Start or F5 to run the application and see a text file
written on your Desktop, or see an error message

There is also an
AppendAllLines()
method that can be used
to add the contents of a
string array to a file.

90
A

cc
es

si
ng

 fi
le

s

When a text file is read
into a string array, the
array’s Length property,
which returns the
number of its elements,
will represent the
number of lines read –
including empty lines!

Reading text and lines
The C# System.IO.File class library provides a ReadAllText()
method that can be used to read text from an existing file and
assign its entire contents to a string variable. The File.Exists()
method can ensure that the text file first exists, and a try-catch
block can ensure the file was read successfully.

Additionally, the System.IO.File class has a ReadAllLines() method,
which can be used to assign each line of a text file to an individual
element of a string array:

l1 Start a new C# Console App and name it “ReadText”
Console.Title = “ReadText” ;

l2 Add this statement to initialize a variable – inserting your
own user name where indicated in the path
string path = “C:\\Users\\username\\Desktop\\word.txt” ;

l3 Next, add a statement to test if a file already exists of the
specified path and filename
if(File.Exists(path))
{
 // Statements to be inserted here (Step 4).
}
else
{
 Console.WriteLine(“File Not Found: “ + path) ;
}
Console.ReadKey() ;

l4 Now, insert a statement to display a message if the file
cannot be read successfully
 try
 {
 // Statements to be inserted here (Steps 5 and 6).
 }
 catch(Exception error)
 {
 Console.WriteLine(error.Message) ;
 }

C#

ReadText

91

The text file’s invisible
newline and tab
characters are preserved
when read by the
ReadAllText() method,
but only the invisible tab
characters are preserved
when it is read by the
ReadAllLines() method.

...cont’d

l5 Then, insert statements to assign the text file contents to a
variable and display its value
 string text = File.ReadAllText(path) ;
 Console.WriteLine(“File Read: “ + path + “\n”) ;
 Console.WriteLine(text + “\n”) ;

l6 Finally, insert statements to assign the text file contents to
an array variable and display each element with a counter
 string [] lines = File.ReadAllLines(path) ;
 int num = 1 ;
 foreach(string line in lines)
 {
 Console.WriteLine(num + “ : ” + line) ;
 num++ ;
 }

l7 Open a text editor such as Notepad, and create a multi-
line text file named “word.txt” on your Desktop

l8 Press Start or F5 to run the application and see a text file
read from your Desktop, or see an error message

Remove the text files’
Read permission on
your system and run
the application again to
see an “Access to path
denied” message.

92
A

cc
es

si
ng

 fi
le

s

The using keyword
has different meanings
according to its context.

Streaming lines
The File.WriteAllText() and File.AppendAllText() methods are
simple to use but provide few options. The System.IO.StreamWriter
class also provides object methods that can be used to write
text to a file, and these provide more options. An instance of a
StreamWriter object must first be created using the new keyword,
and the text file path specified as an argument to its “constructor”
method, like this:

StreamWriter name = new StreamWriter(path) ;

Methods such as Write() and WriteLine() can then be dot-suffixed
to the instance name. A StreamWriter instance is disposable, so its
statements are best enclosed within a using construct to ensure it
is removed from memory upon completion, like this:

using (StreamWriter name = new StreamWriter(path))
{
 // Statements.
}

The using construct can also be wrapped in a try-catch block, to
ensure the text file was written successfully.

Optionally, the StreamWriter constructor can accept a second
argument of true to append to existing text:

l1 Start a new C# Console App and name it “WriteStream”
Console.Title = “WriteStream” ;

l2 Add these statements to initialize three variables –
inserting your own user name where indicated in the path
string path = “C:\\Users\\username\\Desktop\\robert.txt” ;

string[] poem = new string []
{
 “\tThis truth finds honest Tam o’ Shanter” ,
 “\tAs he from Ayr one night did canter” ,
 “\tOld Ayr, which never a town surpasses” ,
 “\tFor honest men and bonny lasses.”
} ;

string attrib = “\n\tTam o’ Shanter (Robert Burns 1790)” ;

C#

WriteStream

93

The using construct
ensures the StreamWriter
is disposed of when its
operations complete, so
the same name can be
used for the new object.

...cont’d

l3 Next, add a statement to display a message if the file
cannot be written successfully
try
{
 // Statements to be inserted here (Steps 4 and 5).
}
catch(Exception error)
{ Console.WriteLine(error.Message) ; }
Console.ReadKey() ;

l4 Now, insert statements that attempt to write the contents
of the variable array into a text file
 using (StreamWriter writer = new StreamWriter(path))
 {
 foreach(string line in poem)
 { writer.WriteLine(line) ; }
 }

l5 Finally, insert statements that attempt to append the
contents of the regular variable into a text file
 using (StreamWriter writer =
 new StreamWriter(path, true))
 {
 writer.WriteLine(attrib) ;
 Console.WriteLine(“File Written: “ + path) ; }
 }

l6 Press Start or F5 to run the application and see a text file
written on your Desktop, or see an error message

Try writing this file into
a non-existent folder to
see an “Access to path
denied” message.

94
A

cc
es

si
ng

 fi
le

s

Manipulating input and output
The System.IO.StreamReader class provides object methods
that can be used to read text from a file. An instance of a
StreamReader object must first be created using the new keyword,
and the text file path specified as an argument to its “constructor”:

StreamReader name = new StreamReader(path) ;

Methods such as Read() and ReadLine() can then be dot-suffixed
to the instance name. A StreamReader instance is disposable, so
its operation statements are best enclosed within a using construct
to ensure it is removed from memory when the operation has
completed. The using construct can also be wrapped in a try-catch
block, to ensure the text file was read successfully.

Text read by a StreamReader object can be manipulated to change
its format before output, for example, to manipulate cells exported
from an Excel spreadsheet as comma-separated values:

l1 Start a new C# Console App and name it “ReadStream”
Console.Title = “ReadStream” ;

l2 Add a statement to initialize a variable – inserting your
own user name where indicated in the path
string path = “C:\\Users\\username\\Desktop\\TopFive.csv” ;

C#

ReadStream

95
...cont’d

l3 Next, add a statement to display a message if the file
cannot be read successfully
try
{
 // Statements to be inserted here (Step 4).
}
catch(Exception error)
{ Console.WriteLine(error.Message) ; }
Console.ReadKey() ;

l4 Now, insert statements that attempt to read the contents
of the text file into a variable, line by line
 using (StreamReader reader = new StreamReader(path))
 {
 string line ;
 while((line = reader.ReadLine()) != null)
 {
 // Statements to be inserted here (Steps 5-6).
 }
 }

l5 Insert statements to modify the case of the column
headers and amend an artist name
 if(line.IndexOf(“Rank”) != -1) line = line.ToUpper() ;
 if(line.IndexOf(“Sia”) != -1) line += “ ft.Sean Paul” ;

l6 Finally, insert statements that display the content of just
two columns, formatted for alignment
 string [] sub = line.Split(‘,’) ;
 line = String.Format(“{0,-30}{1,-20}”, sub[1], sub[2]) ;
 Console.WriteLine(line) ;

l7 Press Start or F5 to run the application and see the
manipulated output from the file content

The String.Format()
placeholders specify
character widths as
negative numbers to
align strings to the left.

When the ReadLine()
method reaches the end
of the file being read, it
returns a null value.

96
A

cc
es

si
ng

 fi
le

s

Summary
• The System.IO.File class provides methods to easily read or

write text files on your computer.

• The System.IO.File.WriteAllText() method requires two
arguments to specify a file path and content to write there.

• The System.IO.File.Exists() method will determine if the file
specified as its argument already exists.

• It is recommended all read or write operations be wrapped in a
try-catch block to report when an attempted operation fails.

• The System.IO.File.WriteAllLines() method can write the
element content of a string array as separate lines of a file.

• The System.IO.File.AppendAllText() method requires two
arguments to specify a file path and content to append there.

• The System.IO.File.ReadAllText() method can be used to assign
the entire content of a text file to a string variable.

• The System.IO.File.ReadAllLines() method can assign individual
lines of a text file to elements of a string array.

• The System.IO.StreamWriter class provides object methods to
write text files on your computer.

• The System.IO.StreamReader class provides object methods to
read from text files on your computer.

• An instance of a StreamReader object or StreamWriter object
is created using the new keyword and by specifying a file path
within the parentheses of its constructor.

• A StreamReader object has Read() and ReadLine() methods
that can be dot-suffixed to an instance name.

• A StreamWriter object has Write() and WriteLine() methods
that can be dot-suffixed to an instance name.

• All StreamReader and StreamWriter objects are disposable, so
should each be enclosed in a using construct.

This chapter demonstrates

how to detect and manage

errors in C# programs.

Detecting real-time errors

Fixing compile-time errors

Debugging code

Setting breakpoints

Catching runtime errors

Getting help

Summary

98

100

102

104

106

108

110

Solving problems8

98
So

lv
in

g
pr

ob
le

m
s

Warnings can be
accepted but errors must
be corrected.

Visual Studio 2022
provides live code
analysis, which displays a
light bulb icon when the
compiler detects an issue
with your code, and has
a suggestion of how to
fix that issue.

Detecting real-time errors
As you type code in the Code Editor window, the Visual Studio
IDE is constantly monitoring your code for possible errors.
It examines the code you type, and provides real-time feedback of
possible errors by adding a wavy underline to questionable code.

Warnings of potential problems are indicated by a green wavy
underline. These are not critical and will not prevent execution of
the application. A rollover tooltip explains the warning:

l1 First, type this variable declaration in the Code Editor
int num

l2 A green wavy line appears below the num variable name.
Place the cursor over the green wavy underline to discover
that the warning is merely indicating a potential problem
as the variable has not yet been assigned a value

Errors are indicated by a red wavy underline. Unlike warnings,
these are critical and will prevent execution of the application:

l1 Type this variable declaration in the Code Editor
int num =

l2 Place the cursor over the red wavy underline to discover
that the error is due to a missing value in the expression

99
...cont’d

Real-time error detection in the Visual Studio IDE is a fantastic
tool to help prevent errors when you are writing code. It not only
indicates errors, but can even provide a list of correction options:

l1 Now, type this variable declaration in the Code Editor
intr num = 1 ;

l2 A red wavy line appears below the intr variable type. Place
the cursor over the red wavy underline to discover that
the error is due to an unknown type specification

l3 Click the light bulb icon, or click the Show potential
fixes link, to see a list of error correction options

l4 If this error is simply a spelling error for the int data type,
select the Change ‘intr’ to ‘int’ option – see your code get
instantly corrected accordingly. Other correction options
allow you to create a new data type if that is what you
require

10
0

So
lv

in
g

pr
ob

le
m

s

Fixing compile-time errors
While syntax errors like those on page 99 can be detected by the
Code Editor in real time, other errors that employ correct syntax
cannot be detected until the code is compiled. Compile errors are
typically errors of logic, and they cause the execution to halt when
an “exception” occurs. For example, when incompatible data types
appear in an expression, an InvalidCastException occurs and
execution stops immediately:

l1 Type the following lines into the Code Editor
bool flag = true ;
IConvertible convertible = flag ;
char letter = convertible.ToChar(null) ;

l2 Press Start or F5 to run the application and see execution
is soon halted. The line causing the exception becomes
highlighted in the Code Editor, and an Exception
Assistant pop-up window appears with a list of possible
solutions

To fix this InvalidCastException, the code would need amending
so both values are of compatible data types.

The cause of other compile errors may be less obvious without
some further investigation – for example, when a loop that is
reading array elements attempts to address an element index that
does not exist, causing an IndexOutOfRangeException.

The IConvertible
interface provides
methods that convert a
value to a CLR type, but
it cannot meaningfully
convert a bool to char.

You can click on the
View Detail link for
more error information.

101
...cont’d

Execution halts immediately, so it is useful to examine the counter
value to identify the precise iteration causing the compile error.

l1 In the Code Editor, type the following variable array
declaration of 10 elements (0-9), and a loop
int [] nums = new int [10] ;
for (int i = 1 ; i < 20 ; i++) { nums [i] = i ; }

l2 Press Start or F5 to run the application and see execution
is soon halted. The code causing the exception becomes
highlighted in the Code Editor, and an Exception
Assistant pop-up window appears with a list of possible
solutions

l3 Place the cursor over the assignment to the array variable
to see a pop-up appear displaying its current value

It’s now clear that execution halted when the loop attempted to
address nums[10] – beyond the bounds of last element nums[9].
To fix this IndexOutOfRangeException, the code would need
amending to end the loop after 10 iterations.

Another common
error is the
FileNotFoundException
that occurs when a file is
missing or its path name
is incorrect.

10
2

So
lv

in
g

pr
ob

le
m

s

Debugging code
It is sometimes useful to closely examine the progression of a
program by watching its execution line by line to locate any bugs.
Progress is controlled by clicking the Step Into button on
the Debug Menu Bar to move through the program one line at a
time. When you begin debugging, you can open a Watch window
to monitor the value of particular variables as execution proceeds:

l1 Type the following code in the Code Editor
int pass = 0 ;
int unit = 2 ;

for (int i = 0 ; i < 3 ; i++)
{
 pass = (pass + 1) ;
 unit = square(unit) ;
}

l2 Now, add this simple arithmetic function
static int square(int num)
{
 return (num * num) ;
}

l3 In the Code Editor, click in the gray margin against the
start of the loop – to set a debug starting “breakpoint”

You can click the Stop
Debugging button at
any time to return to
Code Editor mode.

l4 Click the Start button to begin debugging and see the
code run to the breakpoint then halt

If you can’t see the Step
Into button, right-click
on the Menu Bar and
select Debug to add the
debugging buttons.

C#

Debug

l5 Click Debug, Windows, Watch, Watch1 on the Menu
Bar to launch a Watch window, then enter the variable
names into its Name column

103
...cont’d

l6 Repeatedly
click the Step
Into button
to progress
through each
line of the loop and through the square() function one time
to see the variable values change in the Watch window

The Step Out button
is used to return to the
function caller when you
are stepping through
lines of a called function.

l7 Repeatedly click the Step Into button to progress through
each line of the loop and through the square() function a
second time and see the variable values change again

l8 Now, repeatedly click the Step Over button to
progress through each line of the loop and call the
square() function without stepping through the function

l9 Click the Step Over button to move to the end of
the program and see the debugger automatically close,
returning to regular Code Editor mode

l10 Click the red dot you added in the margin to remove the
breakpoint

10
4

So
lv

in
g

pr
ob

le
m

s

Setting breakpoints
In all but the smallest of programs, stepping through each line is
very tedious when debugging. Instead, you can quickly reach the
part you wish to examine by setting multiple breakpoints to halt
execution on particular lines. Setting one or more breakpoints is
useful to help you understand how certain C# code constructs
work – such as the nested loop construct shown here:

l1 Type this code to create three nested loops that each
increment a counter variable within each loop, and a total
pass iteration counter in the innermost loop
int i , j , k ;
int pass = 0 ;

for (i = 1 ; i < 4 ; i++)
{
 for (j = 1 ; j < 4 ; j++)
 {
 for (k = 1 ; k < 4 ; k++)
 {
 pass++ ;
 }
 }
}

l2 Click in the gray margin against each line containing the
closing brace of each loop to set three breakpoints – a red
dot will appear in the margin and each closing brace is
highlighted to indicate the breakpoints are set

l3 Click the Start button and see the application run to the
first breakpoint it meets

l4 Click Debug, Windows, Locals to launch the Locals
window and notice the current value of each variable

Yellow arrows indicate
the current position.
Click on the red dot to
cancel a breakpoint.

C#

Breakpoints

105
...cont’d

l5 Watch the variable values change as you repeatedly click
the Start (Continue) button to move to each successive
breakpoint until you reach the third outer loop breakpoint

l6 Repeatedly click Step Into until you reach the last
iteration of the outermost loop to see the final values

At the end of the program, each counter variable has been
incremented beyond the upper limit set in the for statements, to
exit each loop, and there has been a total of 27 iterations (3x3x3).

l7 Click the Start button once more to run to the first
breakpoint, then click Debug, Windows, Immediate to
launch the Immediate window

l8 In the Immediate window, type i = 3 and hit Enter, then
use the Step Into button to step through each line of just
the final complete outer loop

The Locals window
shows all variables in
current scope as the
program proceeds.

Any code you type into
the Immediate window
is dynamically applied
to the application being
debugged, but does not
change its code.

10
6

So
lv

in
g

pr
ob

le
m

s

An Int16 is a 16-bit
integer within the range
-32,768 to +32,767 –
whereas an Int32 is a
32-bit integer within
-2,147,483,648 to
+2,147,483,647.

Catching runtime errors
When you are able to predict potential runtime errors by
considering all eventualities, you can provide code to handle
each Exception class error that may arise – by adding a try-catch
construct. Your program can supply information to the user about
the error, should you wish to do so, then proceed normally:

l1 Add this program code to request user input of two
numeric values for addition, then display their sum total
Console.Write(“Please Enter A Number: “) ;
double num1 = Convert.ToInt16(Console.ReadLine()) ;

Console.Write(“Now Enter Another Number: “) ;
double num2 = Convert.ToInt16(Console.ReadLine()) ;

Console.WriteLine(“Total: “ + (num1 + num2)) ;

l2 Press Start or F5 to run the application, then enter any
six-figure integer and hit Enter

l3 The compiler reports an OverflowException error

l4 Click the Stop Debugging button so you can edit the code

C#

ErrorHandling

107

Each Exception has
several methods and
properties. For example,
use error.GetType()
to see the type of
Exception.

...cont’d

l5 Drag the mouse
to highlight all
statements in
Step 1 on the
previous page, then
right-click on the
highlighted area
and choose Snippet,
Insert Snippet:,
Visual C#, try

l6 A try-catch construct is added to the code, enclosing the
highlighted statements within the try block

l7 Edit the default catch block to display an error message
catch (Exception error)
{ Console.WriteLine(error.Message) ; }

l8 Run the application, then enter any six-figure integer and
hit Enter to now see a default explanatory error message

You can provide your own error messages to handle a specific
Exception by stating its type in the catch() parentheses:

l9 Edit the default catch block to display a custom message
catch (OverflowException)
{ Console.WriteLine(”\nMaximum: “ + Int16.MaxValue) ; }

l10 Run the application, then enter any six-figure integer and
hit Enter to now see a custom explanatory error message

You can add multiple
catch blocks after the try
block, to handle different
types of Exception.

The Insert Snippet
feature provides lots of
useful pieces of code
to paste into the Code
Editor – take some time
to explore its contents.

10
8

So
lv

in
g

pr
ob

le
m

s

Getting help
The Visual Studio Help system provides an extensive source of
reference for many programming languages. You can choose to
install a Help library on your computer for the C# programming
language so you can easily refer to it at any time, but the Help
Viewer must first be installed in Visual Studio:

l1 Click Visual Studio Installer on the Windows Start
menu, then select the Installed menu item and click the
Modify button on the Installer dialog

l2 Select the Individual components tab, check the Help
Viewer option, then click the Modify button at the
bottom right of this dialog to install the Help Viewer

The Help Viewer allows
you to download Help
libraries for offline use,
check for available
updates, and seek help
from installed Help
libraries.

l4 On the Manage Content tab, expand Recommended
Documentation, then choose the Add link in the Action
column for the Visual C# library

l5 When your selection is added to the Pending changes
list, click the Update button to download that library

l3 On the Visual Studio Menu Bar, click Help, Add and
Remove Help Content to open the Help Viewer

The Help Viewer may
not be installed by
default when you
install Visual Studio
unless you select it
from the Individual
components list.

109
...cont’d

You can Set Help
Preference to Launch
in Browser if you
want to search online
help without installing
libraries, but local help is
often more convenient.

l6 On the Menu Bar, click Help, Set Help Preference,
Launch in Help Viewer to use installed library

l7 Next, click Help, View Help to launch Help Viewer

l8 Now, select the Index tab in the left-hand pane

l9 Type the item for help, such as “data types”, in the Help
Viewer Search box, then hit Enter to see the results

11
0

So
lv

in
g

pr
ob

le
m

s

Summary
• The Code Editor constantly monitors your code to provide

real-time error detection.

• Warnings are not critical and are indicated by a green wavy
underline – whereas errors are critical and are indicated by a
red wavy underline.

• A light bulb icon beside a red wavy underline indicates that a
list of potential fixes is available.

• Typically, real-time errors are errors of syntax, and compile
errors are errors of logic.

• When a compile error occurs in Debug Mode, execution stops
and the Exception Assistant offers a list of possible fixes.

• In Debug Mode you can discover the current value of any
variable simply by placing the cursor over the variable name.

• When debugging code, the Step Into button lets you walk
through a program one line at a time.

• The Step Over button lets you bypass the lines of a called
method, and the Step Out button lets you return to the line
where that method is called.

• Variable values can be monitored as a program proceeds, using
the Watch window or the Locals window.

• Breakpoints halt the execution of a program to allow
examination of the part of the program where they are set.

• In Debug Mode, code can be dynamically applied using the
Immediate window.

• Runtime errors occur when the user action has not been
anticipated by the programmer.

• A try-catch block can be used to handle anticipated exceptions.

• The Help library system provides extensive reference sources
for both offline and online assistance.

This chapter demonstrates

encapsulation, inheritance,

and polymorphism – the

three principles of C# Object

Oriented Programming.

Encapsulating data

Creating multiple objects

Initializing class members

Inheriting class properties

Calling base constructors

Hiding base methods

Directing method calls

Providing capability classes

Employing partial classes

Summary

112

114

116

118

120

122

124

126

128

130

Creating objects9

11
2

C
re

at
in

g
ob

je
ct

s

Derived classes, which
use the protected
member access specifier,
are introduced later – see
page 118.

If not specified, the
default access specifier
for a class declaration is
internal, and the default
access specifier for class
members is private.

Encapsulating data
A class is a data structure that can contain both variables and
methods in a single entity. These are collectively known as its
“members”, and the variables are also known as its “properties”.

If a class is not declared as static it can be used to create
“instances” that are assigned to a variable for use by other classes.

Access to class members from outside the class is controlled by
“access specifiers” in the class declaration. Typically, these will
deny access to the variable members, but allow access to methods
that can store and retrieve data from those variable members.
This technique of “data hiding” ensures that stored data is safely
encapsulated within the class variable members, and is the first
principle of Object Oriented Programming (OOP).

A class declaration comprises a class access specifier, the class
keyword, and a programmer-specified name – adhering to the
usual C# naming conventions, but beginning in uppercase.

The class declaration is followed by a pair of braces containing the
variable and method declarations, which typically begin with their
own access specifier. So, class syntax looks like this:

access-specifier class ClassName
{
 // Member variable property.
 access-specifier data-type variable-name ;

 // Member method.
 access-specifier return-type method-name (parameter-list)
 {
 statements
 }
}

An access specifier may be any one of these keywords:

• public – accessible from any place where the class is visible.

• private – accessible only to other members of the same class.

• protected – accessible only to other members of the same class
and members of classes derived from that class.

• internal – accessible only to members of the same assembly.

Encapsulation OO
P

113
...cont’d

Any real-world object can be defined by its attributes and by
its actions. For example, a dog has attributes such as name, age,
and color, plus actions it can perform such as bark. The class
mechanism in C# provides a way to create a virtual dog object
within a program, where the variable members of a class can
represent its attributes and the methods represent its actions:

It is conventional to
begin class names with
an uppercase character,
and instance names with
lowercase.

A program class cannot
perfectly emulate a real-
world object, but aims to
encapsulate all relevant
attributes and actions.

The public “setter” and
“getter” methods assign
values to, and retrieve
values from, the private
variable members.

public class Dog
{
 // MEMBER VARIABLES...
 private string name ;
 private int age ;
 private string color ;

 // MEMBER METHODS...

 // Setter & Getter Methods:
 public void setName(string tag)
 {
 name = tag ; // Store the argument value.
 }

 public string getName()
 {
 return name ; // Retrieve the stored value.
 }

 public void setAge(int yrs) { age = yrs ; }
 public int getAge() { return age ; }

 public void setColor(string coat) { color = coat ; }
 public string getColor() { return color ; }

 // Other Methods:
 public string bark() { return “\nWoof, woof!\n” ; }
}

It is important to recognize that a class declaration only defines
a data structure – in order to create an object you must declare
an “instance” of that data structure, assigned to a variable. This
requires the new keyword and class name followed by parentheses:

Dog fido = new Dog() ; // Create a “fido”instance of the Dog class.

The principle of encapsulation in C# programming describes the
grouping together of data and functionality in class members
– name, age, color attributes, and bark action in the Dog class.

11
4

C
re

at
in

g
ob

je
ct

s

In the setter method,
the this prefixed names
reference the class
variable members,
and those without
prefix reference the
parameters. No prefix is
needed to reference the
class variable members.

Creating multiple objects
A program can easily create multiple objects simply by declaring
multiple new instances of a class, and each object can have unique
attributes by assigning individual values with its setter methods.

It is often convenient to combine the setter methods into a single
method that accepts arguments for each private variable. This
means that all values can be assigned with a single statement in
the program, but the method will contain multiple statements.

In C# class declarations, the public “setter” methods, which assign
data to private variable members, and public “getter” methods,
which retrieve data from private variable members, are often
named as the variable they address – but with the first letter made
uppercase and prefixed by “set” or “get” respectively. For example,
methods to access an age variable may be setAge() and getAge().

Parameters may also be named as the variable they address. The
code can differentiate between the parameter and like-named
variable member by dot-prefixing this to the variable name:

l1 Start a new C# Console App and name it “Objects”
Console.Title = “Objects” ;
// Top-level statements to be inserted here (Steps 6-10).

l2 Next, declare a class named “Dog” with three variable
members, plus setter and getter methods for each variable
public class Dog
{
 private string name , color ;
 private int age ;

 public void setValues(string name, int age, string color)
 {
 this.name = name ;
 this.age = age ;
 this.color = color ;
 }

 public string getName() { return name ; }
 public int getAge() { return age ; }
 public string getColor() { return color ; }
}

l3 Then, add a final miscellaneous method in the Dog class
public string bark() { return “\nWoof, woof!\n” ; }

C#

Objects

115

Notice here how the
String.Format() method
call is coded using
newlines to clearly build
a string value for output.

...cont’d

l4 Above the class declaration, begin to add top-level
statements by creating an instance of the Dog class
Dog fido = new Dog() ;

l5 Next, call the new instance object’s setter method to
initialize all its variable members
fido.setValues(“Fido” , 3 , “Brown”) ;

l6 Now, retrieve all properties of the new object
string tagF = String.Format(“{0} is a {1} year old {2} dog”,
 fido.getName() ,
 fido.getAge() ,
 fido.getColor()
) ;

l7 Display all properties and call the miscellaneous method
Console.WriteLine(tagF + fido.bark()) ;

l8 Now, create another instance of the Dog class
Dog lucy = new Dog() ;
lucy.setValues(“Lucy” , 2 , “Gray”) ;

l9 Next, retrieve all properties of this new object
string tagL = String.Format(“{0} is a {1} year old {2} dog”,
 lucy.getName() ,
 lucy.getAge() ,
 lucy.getColor()
) ;

l10 Display all properties and call the miscellaneous method
Console.WriteLine(tagL + lucy.bark()) ;
Console.ReadKey() ;

l11 Press Start or F5 to see each object’s properties

Lucy

Fido

Top-level statements
must precede any class
declarations in the
program code.

11
6

C
re

at
in

g
ob

je
ct

s

Initializing class members
Class variable members can be initialized by a special “constructor”
method that is called whenever an instance of the class is created
– allowing you to specify default values for class variable members.

The constructor method is always named exactly as the class name,
and can contain statements to initialize class variable members –
for example, public class Cat has a public Cat() constructor.

When all class variables have been initialized by the class
constructor method, any instance object of that class will
immediately have those initial property values. Individual setter
methods can usefully adjust the class variable values as needed:

l1 Start a new C# Console App and name it “Constructor”
Console.Title = “Constructor” ;
// Top-level statements to be inserted here (Steps 6-11).

l2 Next, declare a class named “Cat” with three variable
members
public class Cat
{
 private string name , color ;
 private int age ;
 // Methods to be inserted here (Steps 3-5).
}

l3 Now, insert a class constructor method to set default
values for all its variable members
 public Cat()
 {
 name = “Tigger” ; age = 3 ; color = “Brown” ;
 }

l4 Then, insert setter and getter methods for each variable
public void setName(string name) { this.name = name ; }
public void setAge(int age) { this.age = age ; }
public void setColor(string color) { this.color = color ; }

public string getName() { return name ; }
public int getAge() { return age ; }
public string getColor() { return color ; }

l5 Add a final miscellaneous method in the Cat class
public string cry() { return “\nMeow, meow!\n” ; }

C#

Constructor

117
...cont’d

Smokey

Tiggerl6 Above the class declaration, begin to add top-level
statements by creating an instance of the Cat class
Cat tigger = new Cat() ;

l7 Now, retrieve all (default) properties of the new object
string tagT = String.Format(“{0} is a {1} year old {2} cat”,
 tigger.getName() ,
 tigger.getAge() ,
 tigger.getColor()
) ;

l8 Display all properties and call the miscellaneous method
Console.WriteLine(tagT + tigger.cry()) ;

l9 Now, create another instance of the Cat class and set each
property with new values
Cat smokey = new Cat() ;

smokey.setName(“Smokey”) ;
smokey.setAge(2) ;
smokey.setColor(“Gray”) ;

l10 Next, retrieve all (adjusted) properties of this new object
string tagS = String.Format(“{0} is a {1} year old {2} cat”,
 smokey.getName() ,
 smokey.getAge() ,
 smokey.getColor()
) ;

l11 Display all properties and call the miscellaneous method
Console.WriteLine(tagS + smokey.cry()) ;
Console.ReadKey() ;

l12 Press Start or F5 to run the application and see the
properties of each object instance and method called

You can also specify
parameters to a
constructor method in
order to allow argument
values to be passed
when a new instance
object is created.

11
8

C
re

at
in

g
ob

je
ct

s

Inheriting class properties
A C# class can be created as a brand new class, like those in
previous examples, or can be “derived” from an existing class.
Importantly, a derived class inherits members of the parent (base)
class from which it is derived – in addition to its own members.

The ability to inherit members from a base class allows derived
classes to be created that share certain common properties, which
have been defined in the base class. For example, a “Polygon” base
class may define width and height properties that are common to
all polygons. Classes of “Rectangle” and Triangle” could be derived
from the Polygon class – inheriting width and height properties,
in addition to their own members defining their unique features.

The virtue of inheritance is extremely powerful and is the second
principle of Object Oriented Programming (OOP).

A derived class declaration adds a colon : after its class name,
followed by the name of the class from which it derives:

l1 Start a new C# Console App and name it “Inheritance”
Console.Title = “Inheritance” ;
// Top-level statements to be inserted here (Steps 5-7).

l2 Next, declare a base class named “Polygon”, containing
two variable members and one setter method member
public class Polygon
{
 protected int width , height ;

 public void setValues(int width , int height)
 {
 this.width = width ;
 this.height = height ;
 }

}

Rectangle

Polygon

Triangle

C#

Inheritance

 Inheritance OO
P

119

The : operator is used
here to create derived
classes, and is equivalent
to the extends keyword
in other programming
languages – such as Java.

The methods added to
each derived class can be
named alike, as they only
exist within the scope of
their respective class.

...cont’d

l3 Now, define a class that derives from the base class,
inheriting members and adding a method
public class Rectangle : Polygon
{
 public int area() { return (width * height) ; }
}

l4 Then, define another class that derives from the base class,
inheriting members and adding a similar method to that
in the previous step
public class Triangle : Polygon
{
 public int area() { return ((width * height) / 2) ; }
}

l5 Above the class declarations, begin to add top-level
statements by creating an instance object from each
derived class
Rectangle rect = new Rectangle() ;
Triangle cone = new Triangle() ;

l6 Call the inherited setter method of each derived class to
initialize all the inherited variable members
rect.setValues(4 , 5) ;
cone.setValues(4 , 5) ;

l7 Finally, call the added method in each derived class to
display their computed values
Console.WriteLine(“Rectangle Area: “ + rect.area()) ;
Console.WriteLine(“\nTriangle Area: “ + cone.area()) ;
Console.ReadKey() ;

l8 Press Start or F5 to run the application and see the
output from inherited variables

Notice that the setter
method and variables
are not defined in the
derived classes, as they
are inherited from the
base class.

12
0

C
re

at
in

g
ob

je
ct

s

An overloaded method
is one that has the same
name as another method
but different parameters.

Calling base constructors
Although derived classes inherit the members of their parent base
class, they do not inherit its constructor method. Nonetheless,
a constructor method of the base class is always called when
a new object of a derived class is created. The call to the base
class constructor method is made in addition to the call to the
constructor method of the derived class.

The default constructor method of a base class has no parameters
– but the base class may also have one or more “overloaded”
constructor methods that do have parameters.

If you prefer to call an overloaded constructor of the base class
when a new object of a derived class is created, you can create a
matching overloaded constructor in the derived class – having
the same number and type of arguments. The matching derived
class constructor must then explicitly call the overloaded base
class constructor using the base keyword. This is appended to the
derived class constructor declaration after a : colon character.

When a new object of a derived class is created, argument values
can be passed to an overloaded derived class constructor, and
also onwards to its matching overloaded base class constructor in
parentheses following the base keyword:

l1 Start a new C# Console App and name it “Base”
Console.Title = “Base” ;
// Top-level statements to be inserted here (Step 6).

l2 Next, declare a base class named “Parent”, containing a
default constructor method and an overloaded constructor
method that requires a single integer argument
public class Parent
{
 public Parent()
 {
 Console.WriteLine(“Parent Called”) ;
 }

 public Parent(int num)
 {
 Console.WriteLine(“Parent+ Called: ” + num) ;
 }
}

C#

Base

121

The default base
constructor method will
be called implicitly unless
the base keyword is used
to call explicitly.

Here, the argument value
is passed to the derived
class and base class.

...cont’d

l3 After the base class, add a derived class containing a
default constructor method
public class Daughter : Parent
{
 public Daughter()
 { Console.WriteLine(“\tDaughter Called\n”) ; }
}

l4 Next, add another derived class, containing a default
constructor method
public class Son : Parent
{
 public Son()
 { Console.WriteLine(“\tSon Called\n”) ; }

 // Overloaded constructor to be inserted here (Step 5).
}

l5 Now, insert an overloaded constructor method into the
derived class, which requires a single integer argument
 public Son(int num) : base(num)
 {
 Console.WriteLine(“\tSon+ Called: ” + num) ;
 }

l6 Above the class declarations, add top-level statements that
create instances of the derived classes
Daughter anna = new Daughter() ;
Son brad = new Son() ;
Son carl = new Son(100) ;
Console.ReadKey() ;

l7 Press Start or F5 to run the application and see the
output from base and derived class constructors

Son
Daughter

Parent

12
2

C
re

at
in

g
ob

je
ct

s

Hiding base methods
A method can be declared in a derived class to “hide” a similar
method in the base class – if both method declarations have
matching name, arguments, and return type.

Creation of a matching method in a derived class effectively
hides the base class method, as it generally becomes inaccessible.
To indicate that hiding is intentional, rather than accidental, the
hiding method declaration should include the new keyword.

Base class methods can be called explicitly from non-static
methods by prefixing their method name with the base keyword.
Alternatively, as a derived class is a specialization of its base class,
base class methods can be called explicitly using an explicit cast:

l1 Start a new C# Console App and name it “Hide”
Console.Title = “Hide” ;
// Top-level statements to be inserted here (Steps 5-10).

l2 Next, declare a base class named “Man”, containing a
simple method without parameters plus an overloaded
method with a single parameter
public class Man
{
 public void speak()
 {
 Console.Write(“Hello: ”) ;
 }

 public void speak(string message)
 {
 Console.WriteLine(message + “!\n”) ;
 }
}

l3 After the base class, add a derived class containing a
method to intentionally hide the overloaded method of
the same name and parameters in the base class
public class Hombre : Man
{
 public new void speak(string message)
 {
 // Statement to be inserted here (Step 4).
 Console.WriteLine(message) ;
 }
}

C#

Hide

123

A derived class method
name and parameter list
must match that in its
base class to override it.

...cont’d

l4 Next, insert a statement in the derived class to explicitly
call the simple method in the base class
base.speak() ;

l5 Above the class declarations, begin to add top-level
statements by creating an instance of the base class
Man henry = new Man() ;

l6 Next, create an instance of the derived class
Hombre enrique = new Hombre() ;

l7 Add a call to the simple method inherited by the instance
from the base class
henry.speak() ;

l8 Now, add a call to the overloaded method inherited from
the base class
henry.speak(“It’s a beautiful evening”) ;

l9 Then, add a call to the hiding method in the derived class
– that will also explicitly call the simple method in the
base class
enrique.speak(“Hola...”) ;

l10 Finally, add a statement using an explicit cast – to
explicitly call the overloaded method in the base class
((Man) enrique).speak(“Es una tarde hermosa”) ;
Console.ReadKey() ;

l11 Press Start or F5 to run the application and see the
output from base class methods and hiding method

Henry Enrique

12
4

C
re

at
in

g
ob

je
ct

s

Here, the fly() method
in each derived class also
calls the base class fly()
method directly.

Directing method calls
The three cornerstones of Object Oriented Programming (OOP)
are encapsulation, inheritance, and polymorphism. Previous
examples have demonstrated encapsulation of data within a class,
and inheritance of base class members by derived classes. The
term polymorphism (from Greek, meaning “many forms”) is the
ability to have a different behavior according to context. C# class
methods can be made to be polymorphic. Method declarations in
a base class can include the virtual keyword to allow that method
to be overridden in derived classes. Similarly, method definitions
in a derived class can include the override keyword to denote it
will be overriding a virtual base class method. This lets derived
class methods provide their own version of a base class method.
The great advantage of polymorphism with multiple derived class
objects is that calls to methods of the same name are directed to
the appropriate overriding method. This can allow inconsistencies,
however – this example seems to imply that chickens can fly!

l1 Start a new C# Console App and name it “Override”
Console.Title = “Override” ;
// Top-level statements to be inserted here (Steps 5-7).

l2 Next, declare a base class named “Bird”, containing two
methods that allow overriding
public class Bird
{
 public virtual void talk()
 { Console.WriteLine(“A Bird Talks...”) ; }

 public virtual void fly()
 { Console.WriteLine(“A Bird Flies...\n”) ; }
}

l3 After the base class, add a derived class containing two
methods that will override the base class methods
public class Pigeon : Bird
{
 public override void talk()
 { Console.WriteLine(“Pigeon Says: Coo! Coo!”) ; }

 public override void fly()
 {
 Console.WriteLine(“A Pigeon Flies Away...”) ;
 base.fly() ;
 }
}

C#

Override

Polymorphism OO
P

C# overloaded operators
can be described
as polymorphic. For
example, the + operator
can add or concatenate
according to its context.

125

You must use the base
keyword prefix to directly
call a base class method
from a derived class.

Each instance is passed
as an argument for
C# to determine the
appropriate overriding
method to execute.

...cont’d

Polymorphism in
programming is often
called “one interface,
multiple functions”.

l4 Next, add another derived class containing two methods
that will also override the base class methods
public class Chicken : Bird
{
 public override void talk()
 { Console.WriteLine(“Chicken Says: Cluck! Cluck!”) ; }

 public override void fly()
 {
 Console.WriteLine(“I’m A Chicken - I Can’t Fly”) ;
 base.fly() ;
 }
}

l5 Above the class declarations, begin to add top-level
statements with a function to call both overriding methods
 static void describe(Bird obj)
 {
 obj.talk() ;
 obj.fly() ;
 }

l6 Then, create instances of each non-base class
 Pigeon joey = new Pigeon() ;
 Chicken lola = new Chicken() ;

l7 Finally, add statements to call appropriate methods
 describe(joey) ;
 describe(lola) ;
 Console.ReadKey() ;

l8 Press Start or F5 to run the application and see the
output from overriding methods and base class method

12
6

C
re

at
in

g
ob

je
ct

s

You cannot create an
instance of an abstract
class.

Providing capability classes
Classes whose sole purpose is to allow other classes to be derived
from them are known as “capability classes” – they provide
capabilities to the derived classes. Capability classes generally
contain no data, but merely declare a number of methods that can
be overridden in their derived classes.

A capability class and its methods can all be declared using the
abstract keyword to denote that they can only be implemented in
derived classes. In this case, the method signature is followed by
a semicolon, rather than a method block containing statements.
Method definitions in derived classes can then include the
override keyword to implement the capability class methods.

Adding the sealed keyword to a class declaration is a safeguard
that prevents that class being used as a base class. Understandably,
an abstract capability class cannot be sealed.

The following example builds upon the previous example on pages
124-125 to demonstrate how the “Bird” class can be better written
as a capability class. This now prevents the base class methods
being called directly, to avoid inconsistencies:

l1 Start a new C# Console App and name it “Capability”
Console.Title = “Capability” ;
// Top-level statements to be inserted here (Steps 6-7).

l2 Next, define a base capability class named “Bird”,
containing two methods
public abstract class Bird
{
 public abstract void talk() ;

 public abstract void fly() ;
}

l3 Add a derived class containing two methods that will
override the base class methods
public sealed class Pigeon : Bird
{
 public override void talk()
 { Console.WriteLine(“Pigeon Says: Coo! Coo!”) ; }

 public override void fly()
 { Console.WriteLine(“A Pigeon Flies Away...”) ; }
}

C#

Capability

127

Each instance is passed
as an argument for
C# to determine the
appropriate overriding
method to execute.

...cont’d

l4 Now, add another class that also contains two methods
that will override the base class methods
public sealed class Chicken : Bird
{
 public override void talk()
 { Console.WriteLine(“Chicken Says: Cluck! Cluck!”) ; }

 public override void fly()
 { Console.WriteLine(“I’m A Chicken - I Can’t Fly”) ; }
}

l5 Then, add another class containing a single method that
accepts an object argument
public sealed class Caller
{
 public void describe(Bird obj)
 {
 obj.talk() ;
 obj.fly() ;
 }
}

l6 Above the class declarations, begin to add top-level
statements by creating instances of each non-base class
 Pigeon joey = new Pigeon() ;
 Chicken lola = new Chicken() ;
 Caller call = new Caller() ;

l7 Finally, add statements to call appropriate methods by
passing an object as an argument
 call.describe(joey) ;
 call.describe(lola) ;
 Console.ReadKey() ;

l8 Press Start or F5 to run the application and see the
output from the overriding methods of derived classes

Chicken
(Bird)

Pigeon
(Bird)

12
8

C
re

at
in

g
ob

je
ct

s

If any part is declared
abstract, the whole class
will be abstract, and
if any part is declared
sealed, the whole class
will be sealed.

Employing partial classes
The source code for each example listed in this book is generally
contained in a single .cs file, as each one is just a simple program.
When working on larger projects it is often desirable to spread
the source code over separate files to allow multiple programmers
to work on the project at the same time. Visual Studio allows you
to easily add one or more code files in which to write classes.

Class definitions can also be spread across several files by
including the partial keyword in each separate part of the
definition. Providing all parts have the same level of accessibility,
the C# compiler will combine all parts into a single definition:

l1 Start a new C# Console App and name it “Parts”
Console.Title = “Parts” ;
// Top-level statements to be inserted here (Steps 9-10).

l2 On the Visual Studio menu, select Project, Add Class...
to launch the “Add New Item” dialog box

l3 Edit the name field to the name of the class to be added
there – in this case, it’s to be a class named “Sailboat”

l4 Click the Add button to add
the new file to your project

l5 Next, select View, Solution
Explorer and double-click on
Sailboat.cs to open that file in
the Code Editor

C#

Parts

Alternatively, you
can right-click on the
project name in Solution
Explorer and choose
Add, New Item to
launch this dialog.

129
...cont’d

l6 Replace the default code with this class constructor part
public partial class Sailboat
{
 private string make ;
 private string model ;

 public Sailboat(string make , string model)
 {
 this.make = make ;
 this.model = model ;
 }
}

l7 Now, in Solution Explorer,
double-click on Program.
cs to open that file in the
Code Editor

l8 Then, add a class method part
public partial class Sailboat
{
 public void describe()
 {
 Console.WriteLine(“Sailboat: {0} {1}” , make , model) ;
 }
}

l9 Above the class declaration, begin to add top-level
statements by creating an instance object
Sailboat boat = new Sailboat(“Laser” , “Classic”) ;

l10 Finally, add a statement to call the added class method
boat.describe() ;
Console.ReadKey() ;

l11 Press Start or F5 to run the application and see the
output from the class parts spread over two files

Notice how the strings
are substituted for
output in this example
from members declared
in another file.

Laser
Sailboat (Boat)

13
0

C
re

at
in

g
ob

je
ct

s

Summary
• Encapsulation, inheritance, and polymorphism are the three

cornerstones of Object Oriented Programming.

• A C# class is a data structure that can contain both variable
members and method members.

• Access to class members is controlled by access specifiers.

• An instance object of a class is created using the new keyword
followed by the class name and parentheses.

• Typically, public setter and getter methods provide access to
private variables to ensure stored data is safely encapsulated.

• Parameters can be named as the variable they address, and the
this keyword prefix can be used to differentiate between them.

• The constructor method of a class is named as the class name
and is called each time an instance of that class is created.

• Derived classes inherit members of the base parent class from
which they are derived.

• A derived class declaration adds a colon after the class name,
followed by the name of the class from which it derives.

• An overloaded constructor of a base class can be called using
the base keyword in a derived class declaration.

• A derived class can include a new method to hide a method in
its parent class if name, arguments, and return type match.

• Base class methods can be called explicitly from a derived class
by prefixing the method name with the base keyword.

• The virtual and override keywords can be used to allow base
class methods to be overridden by derived class methods.

• Capability classes can include the abstract keyword to denote
their methods must be implemented in derived classes.

• Adding the sealed keyword to a class declaration is a safeguard
that prevents that class being used as a base class.

• Class definitions can be spread across several files by including
the partial keyword in each part of the definition.

This chapter demonstrates

how a C# program can

recognize and respond

to events that occur in a

graphical application.

Starting a Forms project

Adding visual controls

Writing functional code

Gathering text entries

Ticking option boxes

Showing user messages

Calling system dialogs

Creating application menus

Making menus work

Importing audio resources

Summary

132

134

136

138

140

142

144

146

148

150

152

Controlling events10

13
2

C
on

tr
ol

lin
g

ev
en

ts

Starting a Forms project
Visual Studio provides a Windows Forms App template that
allows you to easily create a C# program that provides a Graphical
User Interface (GUI) to interact with the user:

l1 On the Menu Bar, click File, New, Project, to open the
“Create a new project” dialog

l3 Enter a project name of your choice in the Name field,
then click on the Create button to create the new project
– in this case, the project name will be “FirstGUI”

l4 Select the .NET version, then wait until Visual Studio
creates your new project. You should then see a Form
Designer window appear displaying a blank Form

l5 Select the View, Solution Explorer menu to open a
Solution Explorer window and see all files in your project

Windows GUI
applications provide
interactive controls that
produce “events” in
response to user actions,
and your program can
respond to those actions.
This is known as event-
driven programming.

C#

FirstGUI

l2 In the “Create a new project” dialog, select Windows
Forms App (.NET Framework) then click Next

You can open the
FormDesigner window
from the menu by
clicking View, Designer
or by pressing the Shift
+ F7 keyboard keys.

133

Alternatively, you can
run applications using
the Debug, Start
Debugging menu
options or by pressing
the F5 keyboard key.

...cont’d

l6 Now, select the View, Properties menu to open a
Properties window to reveal all properties of your Form

The Form Designer is where you create visual interfaces for your
applications, and the Properties window contains details of the
item that is currently selected in the Form Designer window.

l7 The Visual Studio IDE has now gathered all the resources
needed to build a default Windows application – click the
Start button on the toolbar to launch this application

The application simply
creates a basic window
– you can move it,
minimize it, maximize
it, resize it, and quit
the application by
closing it. It may not
do much, but you have
already created a real
Windows GUI app!

Solution Explorer

Properties window

Form Designer

13
4

C
on

tr
ol

lin
g

ev
en

ts

Adding visual controls
The Toolbox in the Visual Studio IDE contains a wide range of
visual controls, which are the building blocks of your applications.
Using the project created on pages 132-133, follow these steps to
start using the Toolbox now:

l1 Click the vertical
Toolbox tab at the
left edge of the IDE
window, or click View,
Toolbox on the Menu
Bar, to display the
Toolbox contents. The
visual controls are
contained under various
category headings beside
an expansion arrow

l2 Click on the expansion
arrow beside the
Common Controls
category heading to
expand the list of the
most commonly used
visual controls. Usefully,
each control name
appears beside an icon
depicting that control as
a reminder. You can click
on the category heading
again to collapse the list,
then expand the other
categories to explore
the range of controls
available to build your
application interfaces

Any pinned Window in
the IDE can be dragged
from its usual location to
any position you prefer.
Drag it back to the initial
location to re-dock it.

The Toolbox will
automatically hide when
you click on another part
of the IDE, but it can be
fixed in place so it will
never hide, using the

 Pin button on the
Toolbox bar.

C#

FirstGUI
(continued)

135
...cont’d

l3 Find the Button item in the Common Controls category
of the Toolbox, then drag it onto the Form in the
Designer window. Alternatively, double-click the Button
item to add it to the Form

The Button control appears on the Form surrounded by “handles”
that can be dragged to resize the button’s width and height.

l4 Click the Start button to run the application and see
the Button control appear in its initial default state

l5 Next, move the pointer over the
Button control to see its appearance
change to its “MouseHover” state

l6 Now, click and hold down the Button
control to see its appearance change
to its “MouseDown” state

l7 Finally, release the Button control
to see its appearance change to its
“MouseUp” state

Each change of appearance is Windows’ default response to an
event that occurs on the Button control, but your C# program can
provide its own response to these, and many more, control events:

l8 Select the Button control then
open its Properties window

l9 Click the Events button and
scroll down to see all possible
Button events

This Button control
performs no function
when it’s clicked – until
you add some code.

A Button is one of the
most useful interface
controls – your program
determines what
happens when the user
clicks it.

Each control can be
given a more meaningful
name in the Properties
window, but for
simplicity, the default
names are used by the
examples in this book.

13
6

C
on

tr
ol

lin
g

ev
en

ts

The lines of code
in this example are
to be inserted into
each individual event-
handler method that is
automatically generated
by Visual Studio.

Writing functional code
The Visual Studio IDE automatically generates code in the
background, to incorporate the visual controls you add to your
program interface. Additional code can be added manually to
the “code-behind” page using the IDE’s integral Code Editor, to
determine how your program should respond to interface events:

Using the project created on pages 132-135, follow these steps to
add your own responses to user actions that produce events:

l1 Select the Button control named button1, then open its
Properties window and click the Events button

l2 Double-click on the
MouseHover item to open a
Form1.cs code-behind page in
the Code Editor at a generated
event-handler method

l3 Next, insert this statement
within the generated method – to change the Button’s
background color in response to a MouseHover event
button1.BackColor = Color.Fuchsia ;

Use the tabs to switch
between the Code
Editor and the Form
Designer.

l4 Similarly, double-click on the MouseDown item and
insert this statement within another generated method –
to change the Button’s background color in response to a
MouseDown event
button1.BackColor = Color.Lime ;

l5 Likewise, double-click on the MouseUp item and insert
this statement within a further generated method – to
change the Button’s background color in response to a
MouseUp event
button1.BackColor = Color.Aqua ;

The Color class provides
lots of standard color
properties – type Color
then a period and use
IntelliSense to see them.

C#

FirstGUI
(continued)

137
...cont’d

l6 Now, click the Form1.cs [Design] tab to return to the
Form Designer window

l7 Double-click on the Button control on the Form to open
the Form1.cs code-behind page in the Code Editor at yet
another generated event-handler method

l8 Finally, insert this statement within the generated method
– to open a message box in response to a Click event
MessageBox.Show(“C# Programming in easy steps”) ;

l9 Run the application, then click the button to see the
MouseHover, MouseDown, and Click event responses

l10 Push the OK button to close the message box and see the
MouseUp event response

Most Windows software
works by responding
to events. For example,
when you press a key,
a KeyPress event can
call its event-handler to
respond to that event.

You can use the View
menu on the Menu
Bar to open the Code
Editor, the Form
Designer, or any other
window you require at
any time.

You can see many more
uses for the MessageBox
class on page 142.

13
8

C
on

tr
ol

lin
g

ev
en

ts

In the Layout property
category, you must
set AutoSize to False
before you can adjust
the Width and Height
values in the Size
property category. This is
needed to allow multiple
lines of text on a Label
control.

A Label control is
generally used to display
static text.

Gathering text entries
A TextBox control can be added to a Form in a Windows
Forms Application to allow the user to enter input. The current
value within a TextBox can be assigned to a variable, typically in
response to a Button Click event, for use inside the program code.

A new value can be assigned to a TextBox as output to the user,
but the user can modify this value. Alternatively, output can be
assigned to a Label control, which the user cannot modify:

l1 Start a new Windows
Forms App, then add a
TextBox, a Button, and
two Label controls

l2 Select the Form itself,
then in the Properties
window modify its
Appearance, Text and
Layout, Height values

l3 Next, modify the Text property values of the Button
control and Label controls so they look like this:

l4 Now, double-click the Button control to open the Code
Editor at a generated Click event-handler

l5 At the very beginning of the Form1 class block, add a
variable with setter and getter methods
private int num ;
public void setNum(int num) { this.num = num ; }
public int getNum() { return num ; }

C#

Entry

139

The content of a TextBox
control is a string value –
so it must be converted
to a numeric data type
for numeric comparison.

...cont’d

l6 In the Form1() constructor method block, insert
statements to initialize the variable with a random value
Random rnd = new Random() ;
setNum(rnd.Next(1, 21)) ;

l7 Then, add a method to compare two arguments and set a
Label control’s Text property with an appropriate message
public void rate(int guess, int num)
{
 if (guess < num) label2.text = “Too Low!” ;
 else
 if (guess > num) label2.text = “Too High!” ;
 else
 label2.text = “*** Correct ***” ;
}

l8 Finally, insert statements within the Button Click event-
handler to compare user input against the random value
int guess = Convert.ToInt16(textBox1.text) ;
rate(guess, getNum()) ;

l9 Press Start or F5 to run the application and enter input
to see the appropriate output messages

If you specify minimum
and maximum
arguments to the Next()
method, it will return a
random integer between
the specified minimum
and maximum-1
– so specifying 21 will
allow a maximum of 20.

14
0

C
on

tr
ol

lin
g

ev
en

ts

You must set one
RadioButton control to
Checked to specify a
default option.

The name of the ListBox
control that appears in
the Form Designer will
not be displayed when
the application runs.

Ticking option boxes
A CheckBox control is a small box with a caption. It lets the
user select the caption choice by clicking on the box, and a check
mark appears in the box to indicate it has been chosen. Clicking
the box once more deselects the choice and unchecks the box.
CheckBox controls are ideal to present a set of choices from
which the user can select none, one, or more than one choice.

A RadioButton control is like a CheckBox, but with one crucial
difference – the user can check only one choice in the group.
Checking a RadioButton automatically unchecks any others.
RadioButton controls are ideal to present a set of choices from
which the user can select only one choice.

Selected CheckBox and RadioButton items can usefully be
added to the collection displayed in a ListBox control:

l1 Start a new Windows
Forms App, then
add RadioButton,
CheckBox, ListBox,
Button, and Label
controls to the Form

l2 Modify the Text
property values of the controls to look like this:

l3 Now, double-click the “Show Selection” Button control to
open the Code Editor at its generated Click event-handler

C#

Option

141
...cont’d

The ListBox control has
an Items property that
provides methods to add
or remove list items from
a collection.

l4 In the Form1() constructor method block, insert a
statement to specify a default option
radioButton1.Checked = true ;

l5 Next, insert a statement within the “Show Selection”
Button Click event-handler to empty any listed items
listBox1.Items.Clear() ;

l6 Insert statements within the “Show Selection” Button
Click event-handler to add selected options to the list
if (radioButton1.Checked)
 listBox1.Items.Add(radioButton1.Text) ;
if (radioButton2.Checked)
 listBox1.Items.Add(radioButton2.Text) ;
if (checkBox1.Checked)
 listBox1.Items.Add(checkBox1.Text) ;
if (checkBox2.Checked)
 listBox1.Items.Add(checkBox2.Text) ;

l7 Now, double-click the “Clear” Button control to open the
Code Editor at its generated Click event-handler

l8 Insert statements within the “Clear” Button Click event-
handler to reset all the options
listBox1.Items.Clear() ;
radioButton1.Checked = true ;
checkBox1.Checked = false ;
checkBox2.Checked = false ;

l9 Press Start or F5 to run the application and select
options to see them appear in the list – then hit Clear

14
2

C
on

tr
ol

lin
g

ev
en

ts

A MessageBox is
“modal” – the user must
deal with its dialog
message before the
program can proceed.

Showing user messages
The features of a MessageBox dialog can be determined by adding
three further arguments after the message string within its Show()
method. These can specify a caption, which buttons the dialog will
display, and which graphic icon will appear on the dialog.

MessageBoxButtons constants

AbortRetryIgnore

OK

OKCancel

RetryCancel

YesNo

YesNoCancel

The dialog button
combinations can be
specified using the
MessageBoxButtons
constant values listed in
this table. For example,
to have the dialog
display Yes, No, and
Cancel buttons, specify
the MessageBoxButtons.
YesNoCancel constant.

The dialog icon can
be specified using
the MessageBoxIcon
constant values listed in
this table. For example,
to have the dialog
display the question
mark icon, specify
the MessageBoxIcon.
Question constant.

When the user presses a MessageBox dialog button it returns an
appropriate DialogResult constant value to the program. These
are named exactly as the individual button label they represent.
For example, any MessageBox dialog OK button returns the
DialogResult.OK constant. The program can therefore examine the
returned value to determine how to proceed.

Always specify a graphic
icon when calling a
MessageBox dialog
to help the user easily
understand the nature of
the message.

MessageBoxIcon constants

Error
Hand
Stop

Question

Exclamation
Warning

Asterisk
Information

None

143
...cont’d

l1 Start a new Windows
Forms App, then add a
Button, a TextBox, and
a Label control to the
Form

l2 Double-click the “Show
Message” Button control to open the Code Editor at its
generated Click event-handler

l3 Insert a block within the “Show Message” Button Click
event-handler to deliberately throw an exception
try
{
 throw new NotImplementedException() ;
}
catch (NotImplementedException notImp)
{
 // Statements to be inserted here (Steps 4-5).
}

l4 Add a statement to assign the user’s decision to a variable
DialogResult result =
MessageBox.Show(“Proceed?”, notImp.Message ,
 MessageBoxButtons.YesNo , MessageBoxIcon.Error) ;

l5 Now, add statements to respond to the user’s decision
textBox1.Text = result.ToString() ;
if(result == DialogResult.Yes) label1.Text = “Proceeding...” ;
if(result == DialogResult.No) label1.Text = “Stopping...” ;

l6 Press Start or F5 to run the application and use the
MessageBox buttons to determine how to proceed

C#

Message

This technique
of throwing a
NotImplementedException
is favored by some
programmers as a reminder
to complete an unfinished
part of the program code.

Alternatively, this program
could stop by calling the
form’s Close()
method in response to
DialogResult.No.

14
4

C
on

tr
ol

lin
g

ev
en

ts

The DialogResult.OK
value indicates the user
pressed the OK button
– just as it does in the
MessageBox example on
page 143.

Calling system dialogs
Visual Studio makes it simple to add the ability to call upon
the standard Windows selection dialogs so the user can choose
options within your applications – for example, calling the Color
dialog to pick a color, calling the Font dialog to choose font
options, or calling the Open dialog to select an image:

l1 Start a new
Windows
Forms App
and add a
PictureBox, a
TextBox, and
three Button
controls to the Form

l2 From the Dialogs section of the Toolbox, add a
ColorDialog, a FontDialog, and an OpenFileDialog
component to the Form – see them appear in the
Component Tray at the bottom of the Form Designer

l3 Double-click the first Button to open the Code Editor at
its generated Click event-handler, then insert this code to
change the background color of the Form
if (colorDialog1.ShowDialog() == DialogResult.OK)
 this.BackColor = colorDialog1.Color ;

l4 Double-click the second Button to open the Code Editor
at its generated Click event-handler, then insert this code
to change the font of the TextBox control
if (fontDialog1.ShowDialog() == DialogResult.OK)
 textBox1.Font = fontDialog1.Font ;

l5 Double-click the third Button to open the Code Editor
at its generated Click event-handler, then insert this code
to choose an image for the PictureBox control
if (openFileDialog1.ShowDialog() == DialogResult.OK)
{
 // Statements to be inserted here (Step 6).
}

C#

Dialog

The SaveFileDialog
is demonstrated in the
example on page 149.

145

The PictureBoxSizeMode.
StretchImage property
will stretch, or shrink, a
selected image to fit the
PictureBox dimensions
as a new Bitmap image.

...cont’d

l6 Insert a block to assign a selected image or display an
error message
try
{
 pictureBox1.SizeMode =
 PictureBoxSizeMode.StretchImage ;
 pictureBox1.Image =
 new Bitmap(openFileDialog1.FileName) ;
}
catch (Exception)
{
 MessageBox.Show(“Error: Select An Image File!” , “ “,
 MessageBoxButtons.OK, MessageBoxIcon.Error) ;
}

l7 Press Start or F5 to run the application and call the
system dialogs to choose program options

14
6

C
on

tr
ol

lin
g

ev
en

ts

Alternatively, you can
create your own custom
menus using the Type
Here box instead of
Insert Standard Items.

Creating application menus
Drop-down menus, toolbars, and status bars, like those found in
most Windows applications, can easily be added to your own C#
GUI applications from the Toolbox:

l1 Start a new Windows Forms App and find the Menus
& Toolbars section of the Toolbox, then double-click the
MenuStrip item to add it to the Form

l2 Click the MenuStrip control’s arrow button to open its
Smart Tag, then select Insert Standard Items

l3 Right-click on any of familiar items and use the context
menu to edit that item. Also, type new custom items into
the Type Here box as required

C#

Jotter

l4 In the Toolbox, double-click on the ToolStrip item to
add it to the Form, then open its Smart Tag and once
more select Insert Standard Items

147
...cont’d

l5 When the familiar icon buttons have been added to the
ToolStrip, right-click on any item and use the context
menu to edit that item. Also add further custom items
from the drop-down list as required

l6 In the Toolbox, double-click on the StatusStrip item to
add it to the Form

l7 Select the StatusLabel item
on the StatusStrip drop-down
list, and set its Text property to
“Ready”

l8 Add a RichTextBox control to the center of the Form,
open its Smart Tag and select the option to
Dock in parent container, then ensure that its ScrollBars
property is set to Both

The menus are not truly
functional until you add
some program code –
as described on pages
148-149.

Use StatusBar messages
to provide feedback to
the user.

14
8

C
on

tr
ol

lin
g

ev
en

ts

Making menus work

C#

Jotter
(continued)

The menu items and toolbar buttons created on pages 146-147
will not truly function until you add code to make them work.
For actions that appear both in a menu and on a button, you can
create a method that can be called from the Click event-handler of
the menu item and that of the button – to avoid duplication:

l1 In Form Designer, click the app’s File menu item to open
its drop-down menu

l2 Double-click on the New menu item to open the Code
Editor in its Click event-handler, and add this method call
newFile() ;

l3 After the Click event-handler block, add this method to
clear any existing text and display a status message
private void newFile()
{
 richTextBox1.Text = null ;
 toolStripStatusLabel1.Text = “Ready” ;
}

l4 Return to the Form Designer, then double-click on the
 New toolbar button to open the Code Editor in that

event-handler, and add a call to the method above
newFile() ;

l5 Add an OpenFileDialog and SaveFileDialog
component from the Dialogs section of the Toolbox

l6 In the Click event-handlers of both the Open menu item
and the Open toolbar button, add this method call
openFile() ;

When you enable New,
Open, and Save dialogs,
keyboard shortcuts are
already configured – try
Ctrl + N, Ctrl + S, and
Ctrl + O to test them.

149
...cont’d

l7 After the Click event-handler blocks, add this method to
load a plain text file
private void openFile()
{
 openFileDialog1.FileName = ““ ;
 openFileDialog1.Filter = “Text Files | *.txt” ;
 if (openFileDialog1.ShowDialog() == DialogResult.OK)
 {
 richTextBox1.LoadFile(openFileDialog1.FileName ,
 RichTextBoxStreamType.PlainText) ;
 }
}

l8 In the Click event-handlers of both the Save menu item
and the Save toolbar button, add this method call
saveFile() ;

l9 After the Click event-handler blocks, add this method to
save a plain text file
private void saveFile()
{
 saveFileDialog1.Filter = “Text Files | *.txt” ;
 if (saveFileDialog1.ShowDialog() == DialogResult.OK)
 {
 richTextBox1.SaveFile(saveFileDialog1.FileName ,
 RichTextBoxStreamType.PlainText) ;
 }
}

l10 Press Start or F5 to run the application and test the
functionality of the New, Open, and Save file menu
items and toolbar buttons

To make the File, Exit
menu item functional,
simply add the call
Application.Exit() ; to its
Click event-handler.

You can change the
Filter to “RichText
| *.rtf” and the
RichTextBoxStreamType
property to .RichText
for files with embedded
objects such as images.

15
0

C
on

tr
ol

lin
g

ev
en

ts

Importing audio resources
Sound files can be imported into an application as a resource, in
much the same way that image files can be imported as a resource,
to enhance the application. These can then be played as required:

l1 Start a new
Windows
Forms App,
then add a
Label and a
Button control
to the Form

l2 In Solution Explorer, right-click on the project item and
select Add, New Item

l3 Choose the Resources File option and name the file
Imported.resx, then click the Add button

You can typically find
the Windows sound files
in the folder on your
computer at
C:\Windows\Media.

C#

Sound

l4 In Solution Explorer, double-click the newly added
Imported.resx item to open its resources window

l5 Select Audio and Add Resource, Add Existing File...
from the drop-down menus to open a dialog

Only sound files in the
WAV format (.wav) can
be imported as audio
resources.

151
...cont’d

Notice that the sound
file name only is dot-
suffixed to Imported –
without its file extension
but the case must match
that of the imported file
name. A sound can be
played repeatedly using
the PlayLooping()
method – and the loop
can be ended with the
Stop() method.

l7 On the Menu Bar, click Build, Build Solution to
generate an Imported.chimes class that calls
a ResourceManager.GetStream() method

l8 Double-click the Button control, then add this
statement above its Click event-handler block to create
an object
System.Media.SoundPlayer chimes =
 new System.Media.SoundPlayer(Imported.chimes) ;

l9 Now, add these statements inside the Button control’s
Click event-handler to play the sound and show a message
chimes.Play() ;
label1.Text = “Playing chimes...” ;

l10 Press Start or F5 to run the application and push the
Button to hear the sound play

l6 Browse to select an audio file, then click the Open button
to add it to the project’s Resources – here, it’s chimes.wav

15
2

C
on

tr
ol

lin
g

ev
en

ts

Summary
• The Windows Forms App template in the “Create a new

project” dialog is used to begin a Windows GUI project.

• The Form Designer window of the Visual Studio IDE is
where you create the application’s visual interface.

• The Properties window contains details of the item that is
currently selected in the Form Designer window.

• The Common Controls section of the Toolbox contains a
wide range of visual controls to build GUI applications.

• The Code Editor is used to create the code-behind page that
determines how the application responds to interface events.

• When the user pushes a Button control, it creates a Click event
to which its event-handler can respond.

• User input into a TextBox control can be assigned to a variable
for use within the application.

• The user cannot directly enter text on a Label control.

• Only one option can be checked in a RadioButton group, but
any number of options can be checked in a CheckBox group.

• A ListBox control has an Items property that provides
methods to add or remove items from the list it contains.

• The Show() method of the MessageBox class accepts
arguments to specify a message, caption, buttons, and icon.

• The Dialogs section of the Toolbox contains components that
allow an application to use the Windows system dialogs.

• The Menus & Toolbars section of the Toolbox contains
components that allow an application to include the familiar
Windows system menu items.

• The Menus & Toolbars components will not truly function
until code is added to their Click event-handlers.

• The Solution Explorer window can be used to import
resources into an application project.

• A SoundPlayer object can be created using the System.Media

class, and provides methods to handle audio resources.

This chapter demonstrates

how to create, test, and

publish a simple C#

program application.

Planning the program

Assigning fixed properties

Designing the layout

Setting dynamic properties

Adding runtime function

Testing the program

Publishing the application

Summary

154

156

158

160

162

164

166

168

Building an
application11

15
4

Bu
ild

in
g

an
 a

pp
lic

at
io

n

Planning the program
When creating a new application it is useful to spend some time
planning its design. Clearly define the program’s precise purpose,
decide what application functionality will be required, then decide
what interface components will be needed.

A plan for a simple application to pick numbers for a lottery
game entry might look like this:

Program purpose

• The program will generate a series of six different random
numbers in the range 1–59, and have the ability to be reset.

Functionality required

• A random number generator.

• A method to display six different random numbers.

• A method to clear the last series from display.

Components needed

• Six Label controls to display the series of numbers – one
number per Label.

• One Button control to generate and display the numbers in
the Label controls when this Button is clicked. This Button
will not be enabled when numbers are on display.

• One Button control to clear the numbers on display in the
Label controls when this Button is clicked. This Button will
not be enabled when no numbers are on display.

• One PictureBox control to display a static image – just to
enhance the appearance of the interface.

Omission of the planning
stage can require time-
consuming changes to
be made later. It’s better
to “plan your work, then
work your plan”.

Toggle the value of
a Button’s Enabled
property to steer the
user. In this case, the
application must be
reset before a further
series of numbers can be
generated.

155
...cont’d

Having established a program plan means you can now create the
application basics by adding the components needed to a Form:

l1 Open the Visual Studio IDE and create a new Windows
Forms App (.NET Framework), then name it “Lotto”

l2 In the Form Designer, add six Label controls to the
Form from the Toolbox

l3 Now, add two Button controls and a PictureBox control
to the Form

You can drag and drop
items from the Toolbox,
or double-click them to
add them to the Form.

C#

Lotto

15
6

Bu
ild

in
g

an
 a

pp
lic

at
io

n

Assigning fixed properties
Having created the application basics on page 155, you can now
assign static values using the Properties window:

l1 Click on the
Form to select
it, then in the
Properties
window, set
the Form’s
Appearance, Text
property to “Lotto
Number Picker”

l2 Select the first
Button control,
then change its
Design, (Name)
to BtnPick, and
its Appearance,
Text to “Get My
Lucky Numbers”

l3 Select the second
Button control,
then change its
Design, (Name)
to BtnReset, and
its Appearance,
Text to “Reset”

l4 Select the
PictureBox
control, then
click the Choose
Image... link to
launch the Select
Resource dialog

You can open the
Properties window
using the F4 key, or
by clicking View,
Properties Window on
the Menu Bar.

The Label controls in
this program will have
their Text property values
assigned dynamically
at runtime – no initial
properties are required.

C#

Lotto
(continued)

157
...cont’d

l5 Select the Project resource file option, then click the
Import... button and browse to the image location

Save your project
periodically as you build
it using File, Save All
on the Menu Bar or
Ctrl + Shift + S keys.

You can use the drop-
down list at the top of
the Properties window
to select any control on
the form.

l7 Click File, Save All or press the Ctrl + Shift + S keys to
save the changes made to the project

l6 Click the OK
button to import
the image resource
and see it get
added to the
project

15
8

Bu
ild

in
g

an
 a

pp
lic

at
io

n

Designing the layout
Having assigned fixed property values on pages 156-157, you can
now design the interface layout.

The size of both the PictureBox control and the BtnPick control
first needs to be adjusted to accommodate their content. This can
easily be achieved by specifying an AutoSize value so that Visual
Studio will automatically fit the control neatly around its content:

l1 Select the
PictureBox
control, then in
the Properties
window, change
its Behavior,
SizeMode to
AutoSize

l2 Select the
BtnPick control,
then in the
Properties
window, set
its Layout,
AutoSize
property to True
– see that the
PictureBox control now fits snugly around the image, and
the BtnPick control has expanded to fit its text

l3 Hold down the left mouse button and drag around the
Labels to select all Label controls

l4 Now, click View, Toolbars, Layout to ensure that the
Layout toolbar is enabled

l5 Click the Align Tops button to stack the Labels in a pile

Ensure that all PictureBox
Margin properties are
set to zero if you do not
require margins around
the image.

Alternatively, you can use
the Smart Tag arrow
button on a PictureBox
control to set its
SizeMode property.

C#

Lotto
(continued)

159
...cont’d

l6 Click the Make Horizontal Spacing Equal toolbar
button to arrange the pile of Labels into a row

l7 Use the Form’s right grab handle to extend its width to
accommodate the row of Labels and PictureBox, then drag
the row and both Buttons to the top-right of the Form

l8 Drag the PictureBox control to the top-left of the Form,
then use the Form’s bottom grab handle to adjust its
height to match that of the image

l9 Use the Snap Lines that appear when you drag controls
around the Form to position the row of Labels and the
Buttons to make the interface look like the layout below

In this case, it does not
matter in what order the
Labels appear in the row.

Avoid the temptation to
change the default styles
of Form controls so they
remain familiar to users.

l10 Set the Form’s Window Style, MaximizeBox and
MinimizeBox properties to False, as Maximize and
Minimize buttons are not required on this interface

16
0

Bu
ild

in
g

an
 a

pp
lic

at
io

n

Setting dynamic properties
Having designed the interface on pages 158-159, you can
now add some functionality to dynamically set the initial Text
properties of the Label controls and the initial Button states:

l1 Click View, Code on the Menu Bar, or press F7, to open
the Code Editor window

l2 After the Form1() constructor method block, add a new
method block
private void Clear()
{
 // Statements to be inserted here (Steps 4-8).
}

l3 With the cursor inside the new method block, press
Ctrl + J, to open the IntelliSense pop-up window

l4 Scroll down the list of items in the IntelliSense window
and double-click on the label1 item to add it into the
Clear() method block

l5 Type a period, then double-click the Text item when the
IntelliSense window reappears, to add that code

The technique described
here demonstrates how
to use IntelliSense –
but you can, of course,
just type the code
directly.

C#

Lotto
(continued)

161
...cont’d

l6 Now, type = “...” ; to complete the line so it reads like this:
label1.Text = “...” ;

l7 Repeat this procedure for the other Label controls – so
that the Clear() method assigns each an ellipsis string

l8 With the cursor inside the Clear() method block, use
IntelliSense in the same way, to add these two lines:
BtnPick.Enabled = true ;
BtnReset.Enabled = false ;

This completes the Clear() method functionality by setting the
Button states. All that remains is to add a call to the Clear()
method to execute all of its instructions when the program starts.

l9 In the Form Designer, double-click on the Form to open
the Code Editor in its Load event-handler, then press
Ctrl + J to open the IntelliSense window

l10 Scroll down the list in the IntelliSense window and
double-click on the Clear item you have just created, to
add a call statement in the Load event-handler

Type “Intellisense” into
the Quick Launch box
at the top of the Visual
Studio window to
discover the IntelliSense
Menus and Options.

16
2

Bu
ild

in
g

an
 a

pp
lic

at
io

n

Adding runtime function
Having created code to initialize dynamic properties on pages
160-161, you can now add runtime functionality to respond to
clicks on the Button controls:

l1 In the Form Designer, double-click on the BtnReset
Button control to open the Code Editor in its Click
event-handler, then add this method call
Clear() ;

This is all that is needed to provide dynamic functionality for
the BtnReset control. The main dynamic functionality of this
application is provided by the BtnPick control, which requires an
instance of a Random class, random number generator object:

l2 In the Form Designer, double-click on the BtnPick
Button control to open the Code Editor in its Click
event-handler

l3 In the Click event-handler block, add this statement to
create a random number generator object
Random rnd = new Random() ;

l4 Next, add a statement to create an array of 59 elements to
store a sequence of numbers
int [] seq = new int[59] ;

l5 Now, add a loop to fill the array elements (index 0 to 58)
with integer values 1 to 59
for (int i = 1 ; i < 60 ; i++)
{
 seq[i - 1] = i ;
}

l6 Add a second loop to shuffle the values within all the
array elements – an algorithm to randomize their order
for (int i = 0 ; i < 59 ; i++)
{
 int j = (rnd.Next() % 59) ;
 int k = seq[i] ; seq[i] = seq[j] ; seq[j] = k ;
}You don’t need to

understand in detail the
algorithm that is used to
shuffle the values.

C#

Lotto
(continued)

The random number
generator is used here to
generate random values
between 0 and 58 to
shuffle array elements.

163
...cont’d

l7 Next, add the following lines to display the numbers
contained in array elements 1-6 in the Label controls
label1.Text = seq[1].ToString() ;
label2.Text = seq[2].ToString() ;
label3.Text = seq[3].ToString() ;
label4.Text = seq[4].ToString() ;
label5.Text = seq[5].ToString() ;
label6.Text = seq[6].ToString() ;

l8 Now, add these two lines to set the Button states ready to
reset the application
BtnPick.Enabled = false ;
BtnReset.Enabled = true ;

l9 Add comments for others examining the code, and for
yourself when revisiting the code later – for example,
maybe to explain the algorithm that shuffles the numbers

Label controls can only
contain string values, so
the int numeric values
must be converted.

l10 Click File, Save All or press the Ctrl + Shift + S keys to
save the changes made to the project code-behind page

16
4

Bu
ild

in
g

an
 a

pp
lic

at
io

n

Testing the program
Having worked through the program plan on the previous pages,
the components needed and functionality required have now been
added to the application – so it’s ready to be tested:

l1 Click the Start button, or press F5, to run the application
then examine its initial start-up appearance

The Form’s Load event-handler has set the initial dynamic values
of each Label control and disabled the reset button as required.

l2 Click the BtnPick Button control to execute the
instructions within its Click event-handler

A series of numbers within the desired range is displayed, and
the Button states have changed as required – a further series of
numbers cannot be generated until the application has been reset.

l3 Make a note of the numbers generated in this first series
for comparison later

l4 Click the BtnReset control to execute the instructions
within that Click event-handler and see the application
return to its initial start-up appearance as required

Notice that no number is
repeated in any series.

C#

Lotto
(continued)

165
...cont’d

l5 Click the BtnPick Button control again to execute its Click
event-handler code a second time

Another series of numbers within the desired range is displayed
and are different to those in the first series when compared –
good, the numbers are being randomized as required.

l6 Click the Stop Debugging button, then click the Start
button to restart the application and click the BtnPick
Button control once more

The generated numbers in this first series of numbers are different
to those noted in the first series the last time the application ran
– great, the random number generator is not repeating the same
sequence of number series each time the application runs.

Remember that this
application interface
has no Minimize or
Maximize buttons
because their properties
were set to false – see
page 159, Step 11.

Alternatively, you can
click the app’s X button
to close the application
and stop debugging.

16
6

Bu
ild

in
g

an
 a

pp
lic

at
io

n

Publishing the application
Having tested the application on pages 164-165, you can now
create a standalone version for installation outside the Visual
Studio IDE, and for deployment elsewhere.

l1 On the Menu Bar, click Build, Publish Selection, then
select the ClickOnce option and click Next

l2 Now, use the wizard’s Browse button to select a location
where you wish to publish the application – for example,
into a folder created on a USB drive, then click Next

Applications signing is
optional, but does verify
authentication. Find
more details online at
docs.microsoft.com/en-
us/visualstudio/ide/how-
to-sign-application-and-
deployment-manifests

C#

Lotto
(continued)

l3 Then, choose how the app will be installed – for example,
from a USB drive, then click Next

l4 Choose a version number for the app, then click Next

l5 Check the Sign the ClickOnce manifests box, then click
Select from store and choose a certificate, or click Create
Test Certificate for temporary testing only

Each time you publish an
application, its version
number is automatically
incremented – 1.0.0.0,
1.0.0.1, 1.0.0.2, etc.

167
...cont’d

The Publish Wizard generates a number of files, including a
familiar “setup.exe” executable installer.

l8 Move the portable media to the system where it is to be
deployed, then run setup.exe to install the application

The installer will install the targeted .NET runtime if required
and add a shortcut to the All apps menu that can be used to
launch the application. The user can then run the application just
as it performed during testing in the Visual Studio IDE.

The installer also adds an item to the client system’s Add/Remove
Programs list, which can be used to uninstall the application –
just like any other Windows program.

l6 Click the Next button to move to the final dialog page,
confirm the listed choices, then click the Finish button

l7 Finally, click the Publish button to publish the
application at the specified location

16
8

Bu
ild

in
g

an
 a

pp
lic

at
io

n

Summary
• Always make an initial program plan, to avoid the need for

time-consuming changes later.

• A program plan should clearly define the program purpose,
functionality required, and components needed.

• Fixed properties that will not change when the application is
running can be set at design time in the Properties Window.

• The Import button in the Select Resources dialog can
automatically assign an image to a PictureBox control.

• An AutoSize property value makes Visual Studio
automatically fit a control neatly around its content.

• The Form Designer’s Layout toolbar contains useful features
to quickly align and space multiple interface controls.

• Snap Lines help you to easily align a selected control to others
in the interface at design time.

• Setting a Form’s Window Style, MaximizeBox, and
MinimizeBox properties to False removes those buttons.

• Dynamic properties that will change when the application is
running can be initialized with the Form’s Load event-handler.

• The pop-up IntelliSense window lets you easily add program
code when using the Code Editor.

• Runtime functionality responds to user actions by changing
dynamic properties.

• A Debug version of an application allows its functionality to
be tested as the application is being created in text format.

• The Build process compiles a Release version of an application
in binary format.

• The Publish process creates a final Release version with an
installer so the application can be deployed elsewhere.

• Applications created with the Visual Studio IDE can be
installed and uninstalled just like other Windows applications.

This chapter demonstrates

how to create a Universal

Windows Platform

application using C#

programming.

Starting a Universal project

Inserting page components

Importing program assets

Designing the layout

Adding runtime function

Testing the program

Adjusting the interface

Deploying the application

Summary

170

172

174

176

178

180

182

184

186

Targeting devices12

17
0

Ta
rg

et
in

g
de

vi
ce

s

Depending upon your
choices when you
installed Visual Studio,
you may see the options
checked when the
installer launches, to
indicate you already have
the Universal Windows
App development
tools.

Starting a Universal project
Windows 10 introduced the Universal Windows Platform
(UWP) that enables you to create a single Universal Windows
Application (UWA) that will run on any modern Windows-
based device. The interface layout of a UWA uses the eXtensible
Application Markup Language (XAML) to specify components.
In order to develop apps for the UWP, you should be running
Windows 10 or Windows 11, and your Visual Studio IDE must
include the Universal Windows App Development Tools:

C#

Universal

l1 Click Visual Studio Installer on the All apps menu, then
click the Modify button on the Installer dialog

l2 See if the Universal Windows Platform development
option box is checked in the Desktop & Mobile category
on the Workloads tab – indicating this item is installed

l3 If the box is not checked, check it now then click the
Modify button at the bottom-right of the Installer
dialog to download and install the Universal Windows
Platform development tools

l4 Select File, New, Project and create a new C# Blank
App (Universal Windows) and name it “Universal” – for
Windows, Desktop, Xbox, etc.

The example in this
chapter is for Visual
Studio 2022 on Windows
10 or 11 – it won’t
work in earlier Windows
editions.

171

In Windows you
should ensure that
the Developer Mode
option is enabled in
Settings, Privacy
& Security, For
developers.

...cont’d

These files are essential
to all UWP apps using
C#, and exist in every
project Visual Studio
creates to target the
Universal Windows
Platform with C#.

l6 After Visual Studio creates the new project, select View,
Solution Explorer to examine the generated files:

• A set of logo images
in an Assets folder.

• Internal XAML and
C# files for the App.

• XAML and C# files
for the MainPage
– here is where you
will create interface
components and
functional code.

• Other miscellaneous
Package files.

l5 Click OK
to accept the
suggested
target versions

17
2

Ta
rg

et
in

g
de

vi
ce

s

Explore these buttons to
change the magnification
and grid characteristics.

Inserting page components

C#

Universal
(continued)

Visual Studio provides a two-part window to insert interface
components into a UWP app. This comprises a Design view of
the components, and a XAML view for the XAML code:

l1 Open Solution
Explorer then double-
click on
MainPage.xaml – to
launch a two-part
window

l2 See that, by default, the
Design view displays
a blank canvas in Landscape mode, and the Code view
contains some default code

XAML is pronounced
“zammel”. You can write
XAML code in the Code
view to add components
to the canvas previewed
in Design view.

You can select from
a range of device
emulators in this menu.

There is a pop-out Toolbox feature that lets you add components
onto the canvas, but you will need to edit them in the XAML
code later. In this example, the components are created in XAML
code from the very start.

173
...cont’d

l3 Now, see that by default, the XAML view reveals there
are <Grid> </Grid> tags – this is the root element of the
canvas in which you can add component elements

Component elements are best nested within a <StackPanel>
element, as this can be given an x:Name for reference in functional
code, and an Orientation attribute to specify the direction in which
the nested elements should appear. Common component elements
include <Image>, <TextBox>, <TextBlock> (label), and <Button>.
Several <StackPanel> elements can be nested within each other to
determine the Horizontal and Vertical layout of components:

l4 Insert elements between the root <Grid> </Grid> tags, so
the XAML code looks precisely like this:

l5 As you add
the component
elements in
XAML view, they
appear in the
Design view until
it looks like this:

The outer horizontal
<StackPanel> contains
an <Image> element,
and a nested vertical
<Stackpanel> containing
two further horizontal
<StackPanel> elements.
The x: prefix before the
Name attribute refers
to the XAML schema
used by UWP apps. Each
<TextBlock> element
has a Text attribute that
can be referenced in
functional code, such as
textBlock1->Text.

<Grid>
 <StackPanel x:Name=”MainStack” Orientation=”Horizontal”>
 <Image x:Name=”Image” Width=”200” Height=”200” />
 <StackPanel x:Name=”Controls” Orientation=”Vertical”>
 <StackPanel x:Name=”Labels” Orientation=”Horizontal”>
 <TextBlock x:Name=”textBlock1” Text=”TextBlock” />
 <TextBlock x:Name=”textBlock2” Text=”TextBlock” />
 <TextBlock x:Name=”textBlock3” Text=”TextBlock” />
 <TextBlock x:Name=”textBlock4” Text=”TextBlock” />
 <TextBlock x:Name=”textBlock5” Text=”TextBlock” />
 <TextBlock x:Name=”textBlock6” Text=”TextBlock” />
 </StackPanel>
 <StackPanel x:Name=”Buttons” Orientation=”Horizontal”>
 <Button x:Name=”BtnPick” Content=”Button” />
 <Button x:Name=”BtnReset” Content=”Button” />
 </StackPanel>
 </StackPanel>
 </StackPanel>
</Grid>

17
4

Ta
rg

et
in

g
de

vi
ce

s

An image for display may
be in any popular file
format – such as .bmp,
.gif, .jpg, .png, or .tif.

Importing program assets
In order to have a XAML <Image> component display a graphic,
an image file first needs to be added to the projects Assets folder.
It can then be assigned to a Source attribute of the <Image> tag:

l1 Open Solution Explorer, then right-click on the Assets
folder and choose Add from the context menu

l2 Now, choose Existing Item... from the next context menu
– to open an Add Existing Item dialog box

l3 In the Add Existing Item dialog, browse to the location
of an image, then select the file and click the Add button

C#

Universal
(continued)

175
...cont’d

l4 In Solution Explorer, the selected image file now appears
in the project’s Asset folder

l5 Select the Image
component in
Designer view,
then click View,
Properties
Window
to reveal its
properties

l6 In the Properties
window, expand
the Common
category, then
click the Source item’s arrow button and select the added
image from the drop-down list

l7 The image now appears in the Design view, and its path
gets added to the XAML code and Source property

Explore the Appearance
and Transform options
in an image’s Properties
window, to discover how
you can modify how it
will be displayed.

17
6

Ta
rg

et
in

g
de

vi
ce

s

Designing the layout
To complete the app’s layout, design attributes can be added to
the XAML element tags to specify what they will display and
precisely where in the interface they will appear.

A single Margin value sets all four margins around a component.
You can specify two values to set left and right, and top and
bottom margins – for example, Margin = “10,30”. Alternatively,
you can specify four values to set left, top, right, bottom margins
individually – e.g. Margin = “10,30,10,50”.

l1 Open MainPage.xaml, then add two attributes to the
outer MainStack <StackPanel> element to fix its position
HorizontalAlignment = ”Left” VerticalAlignment = ”Top”

l2 Next, edit the <Image> element by modifying the initial
assigned value of 200 – to increase its width
Width = ”300”

l3 Now, add an attribute to the nested Controls
<StackPanel> element to fix its position
VerticalAlignment = ”Center”

l4 Then, edit all six <TextBlock> elements alike, to specify
their initial content, width, and margin on all four sides
Text = ”...” Width = ”20” Margin = ”15”
Text = ”...” Width = ”20” Margin = ”15”
Text = ”...” Width = ”20” Margin = ”15”
Text = ”...” Width = ”20” Margin = ”15”
Text = ”...” Width = ”20” Margin = ”15”
Text = ”...” Width = ”20” Margin = ”15”

l5 Edit the BtnPick <Button> element to specify its button
label content, margin on all four sides, and initial state
Content = “Get My Lucky Numbers” Margin = “15”
IsEnabled = “True”

l6 Edit the BtnReset <Button> element to specify its button
label content, and initial state
Content = “Reset” IsEnabled = “False”

C#

Universal
(continued)

177
...cont’d

As you make changes to the XAML code, the component layout
gets changed accordingly in the Design view, and should now
look like this:

The order in which the attributes appear in each element is
unimportant, but the elements within the MainPage.xaml file
should now look similar to the screenshot below:

You can optionally add
Margin = “0” attributes
to explicitly require
elements to have no
margin width.

17
8

Ta
rg

et
in

g
de

vi
ce

s

There is no Enabled
property in UWP apps;
it is called IsEnabled
instead.

The randomizer routine
uses exactly the same
logic as that of the
Windows Forms
Application example –
see page 162.

Adding runtime function
Having completed the application component layout with
XAML elements on pages 176-177, you are now ready to add
functionality with C# programming code:

l1 In Design view, double-click on the BtnPick button

l2 The MainPage.xaml.cs code-behind page opens in the
Code Editor at a generated BtnPick_Click event-handler

l3 In the BtnPick_Click event-handler block, insert these
statements to create a randomized array of integers
between 1 and 59
Random rnd = new Random() ;
int [] seq = new int[59] ;
for (int i = 1 ; i < 60 ; i++) seq[i - 1] = i ;
for (int i = 0 ; i < 59 ; i++)
{
 int j = (rnd.Next() % 59) ;
 int k = seq[i] ; seq[i] = seq[j] ; seq[j] = k ;
}
// Statements to be inserted here (Steps 4-5).

l4 Next, insert statements to assign six array element values
to the <TextBlock> components
textBlock1.Text = seq[1].ToString() ;
textBlock2.Text = seq[2].ToString() ;
textBlock3.Text = seq[3].ToString() ;
textBlock4.Text = seq[4].ToString() ;
textBlock5.Text = seq[5].ToString() ;
textBlock6.Text = seq[6].ToString() ;

l5 Next, insert statements to set the <Button> states
BtnPick.IsEnabled = false ;
BtnReset.IsEnabled = true ;

l6 Return to MainPage.xaml, then in Design view, double-
click on the BtnReset button

l7 The MainPage.xaml.cs code-behind page opens in the
Code Editor at a generated BtnReset_Click event-handler

C#

Universal
(continued)

There is no Label
component in UWP
apps; it is called a
TextBlock instead.

179
...cont’d

l8 In the BtnReset_Click event-handler block, insert
statements to assign strings to the <TextBlock> components
textBlock1.Text = “...” ;
textBlock2.Text = “...” ;
textBlock3.Text = “...” ;
textBlock4.Text = “...” ;
textBlock5.Text = “...” ;
textBlock6.Text = “...” ;
// Statements to be inserted here (Step 9).

l9 Finally, insert statements to set the <Button> states
BtnPick.IsEnabled = true ;
BtnReset.IsEnabled = false ;

The functions in the MainPage.xaml.cs code-behind page should
now look like the screenshot below:

l10 Return to the MainPage.xaml file, then in XAML view,
see that attributes have been automatically added to the
<Button> elements to call the event-handler code

Notice that the first
for loop contains only
one statement to be
executed on each
iteration, so braces are
not required.

The BtnReset button
simply returns the
<TextBox> and
<Button> components
to their original states.

18
0

Ta
rg

et
in

g
de

vi
ce

s

You must have your
PC set to Developer
Mode in Settings,
Privacy & Security, For
developers.

Testing the program
Having added functionality with C# code on pages 178-179, you
are now ready to test the program for two devices:

l1 On the Visual Studio standard toolbar, select Debug for
x64 architecture and Local Machine options, then click
the Start button to run the app with debugging enabled

l2 Wait while the application gets built and loaded, then
click the buttons to try out their functionality

The app looks good – numbers are being randomized and the
button states are changing as required.

l3 Now, on the Visual Studio
standard toolbar, select
Debug, Stop Debugging to
exit the running program

C#

Universal
(continued)

181
...cont’d

l4 Click the Start button to restart the app, then click
the buttons and compare the sequences of randomized
numbers to those generated in the previous test

Test on the emulator
with lowest memory and
smallest screen, and it
should be fine running
on devices with better
features.

Great – the random number generator is seeded with the current
time to ensure a different sequence each time the app gets run.

l5 Drag the window edge to reduce its width, to simulate
how the app would look on a device with a narrower screen

This is unsatisfactory – adjustments will be needed to the interface
layout so it will adapt to suit narrower display areas.

18
2

Ta
rg

et
in

g
de

vi
ce

s

XAML code recognizes
the same <!-- -->
comment tags that are
used in HTML code.

Remember that the
outer <StackPanel> in
this app contains an
<Image> and a nested
<StackPanel> displayed
horizontally, side by side.
If displayed vertically,
they should appear one
above the other.

Adjusting the interface
The app test for mobile devices on pages 180-181 failed to
satisfactorily present the controls, as the interface is too wide
for small screen devices. Happily, the interface can be made to
adapt to different screen sizes so it can also look good on mobile
devices. The adaptation relies upon recognizing the screen size and
changing the orientation of a <StackPanel> element in XAML
for narrow screen devices:

l1 Open MainPage.xaml, then in XAML view add these
elements immediately below the opening <Grid> element
and before the component elements
<VisualStateManager.VisualStateGroups>
 <VisualStateGroup>

 <!-- Elements to be inserted here (Steps 2-3) -->

 </VisualStateGroup>
</VisualStateManager.VisualStateGroups>

l2 Next, insert elements to recognize wide screens
<VisualState x:Name = “wideState” >

 <VisualState.StateTriggers>
 <AdaptiveTrigger MinWindowWidth = “641” />
 </VisualState.StateTriggers>

</VisualState>

l3 Now, insert elements to recognize narrow screens, and to
change the Orientation of the outer <StackPanel>
<VisualState x:Name = “narrowState” >

 <VisualState.StateTriggers>
 <AdaptiveTrigger MinWindowWidth = “0” />
 </VisualState.StateTriggers>

 <VisualState.Setters>
 <Setter
 Target = “MainStack.Orientation” Value = “Vertical” />
 </VisualState.Setters>

</VisualState>

The beginning of the MainPage.xaml file should now look similar
to the screenshot at the top of the opposite page:

C#

Universal
(continued)

183

Although an app
may work well on
an emulator, it
is recommended
you always test on
actual devices before
deployment.

...cont’d

l4 Select x64 and Local Machine to run the app once more
– it still looks and functions well

l5 Now, drag the window edge to reduce its width, and see
the interface adapt to suit a narrower screen

You can have Visual
Studio nicely format the
XAML code by pressing
Ctrl + K, Ctrl + D.

18
4

Ta
rg

et
in

g
de

vi
ce

s

You can choose the
Remote Machine
option to test via a
network connection.

Deploying the application

C#

Universal
(continued)

Having tested the app on page 183, it can now be deployed onto
your PC. This will register the app on your PC and add it to the
All apps menu, so an icon image can usefully be added to the
program files to identify the app:

l1 Add a 400 x 400 pixel icon image into the project’s Assets
folder on your PC

l2 In Solution Explorer, right-click on the Assets folder and
choose Add, Existing Item from the context menu and
add the icon image

l3 Next, double-click Package.appxmanifest and select the
Visual Assets tab and the All Visual Assets item

l4 Add the icon image as the Source and click the Generate
button to produce variously-sized tiles and logo images

l5 Change the build type to Release, then click Build,
Deploy Solution to register the app on your PC and see
it get added to your PC’s All apps menu

185
...cont’d

An App Package can be created for deployment on other devices
running Windows version 1809 or later:

l1 Select Release on the toolbar

l2 In Solution Explorer, right-click on the top-level
Universal project folder, then choose Publish, Create
App Packages from the context menu to launch a wizard

l3 In the wizard, choose the Sideloading and Enable
automatic updates options, then click Next

l4 Select a package signing certificate, then click Next

l5 Choose a destination (e.g. a USB drive), version
numbering, and architecture – then click Create

The build creates a folder of several items, including an Application
Package file (.msixbundle) and a Security Certificate (.cer) file.

l6 Move the folder to another device, then right-click on
the Security Certificate file. Select Install then Local
Machine and Trusted People to import the certificate

l7 Finally, double-click the Application Package file to
Install and Launch the app on that device

18
6

Ta
rg

et
in

g
de

vi
ce

s

Summary
• The Universal Windows Platform (UWP) enables a single

app to run on any modern Windows-based device.

• The Universal Windows App Development Tools are needed
in order to develop UWP apps.

• The C# Blank App (Universal Windows) template can be
used to create a new UWP project.

• The Developer Mode setting must be enabled in the
Windows options in order to develop and test UWP apps.

• The eXtensible Application Markup Language (XAML) is
used to specify components and layout on UWP apps.

• Visual Studio provides a graphical Design view and a text
code XAML view for the MainPage.xaml file.

• Component elements can be placed within XAML
<StackPanel> elements to control how they are laid out.

• Image files can be added to the Assets folder and assigned to
XAML <Image> elements for display on the interface.

• Space can be added around a component by adding a Margin

attribute and assigned value within its element tag.

• Functional C# programming code can be added to the
MainPage.xaml.cs code-behind page.

• A UWP app can be tested in Debug mode on the Local
Machine, an Emulator, and a connected Device.

• The interface of a UWP app can adapt to different screen sizes
by changing the orientation of <StackPanel> elements.

• Image files can be added to the Assets folder for assignment as
logos in the Package.appmanifest window.

• The Release version can be deployed by selecting the target
configuration, then using the Build, Deploy Solution menu.

187

Index

A
abstract keyword 126
access specifier

public, private, static 60
access specifiers

public, private, protected, internal 112
addition operator + 34
Add New Item, Add Class 128
Add New Item dialog, Visual Studio IDE 128
Align Tops button, Visual Studio IDE 158
American Standard Code for Information Interchange

(ASCII) 29
angled brackets < > 57
appending to files 88
Application Package file (.msixbundle) 185
App Package 185
architecture, selection

x64 180
arguments, passing

By Reference 62
By Value 62
For Output 62

arithmetic operators
+ - * / % ++ -- 34

array declaration 26
assembly, .exe, .dll file 8
Assets folder, Solution Explorer 171

Add, Existing Item 174
assignment operators

= += -= *= /= %= 36
associativity, operator precedence 44
audio resources 150
AutoSize value, control 158

B
base class 118
base constructors 120
base keyword 120, 122
Bitmap object 145
bitwise operators 44
Blank App (Universal Windows), new 170
bool, data type 22
Boolean values, true, false 40
braces { } 26, 30, 48
break keyword, switch 50

breakpoint 16
breakpoint, debugging 102, 104
break statement, loop 54
Button control 135

C
capability classes 126
case-sensitivity 18, 22
case statement, switch 50
casting data types

explicit 28
implicit 28

chained methods 72
char, data type 22
CheckBox control 140
class data structure

access specifiers 112
members 112
properties 112

class declaration 112
class libraries 8
class object

methods 8
properties 8

Click event-handler 139, 148, 178
code-behind page 136
Code Editor 10, 14, 98, 136, 161, 178
ColorDialog component 144
color theme, Visual Studio IDE 13
combined operators 36
comments, in code 18
Common Controls, Visual Studio IDE 134
Common Language Runtime (CLR) 8
comparison operators

== != < <= > >= 38
compiler 9
compile-time errors 100
Component Tray, Visual Studio IDE 144
concatenation operator + 34, 74
concatenation operator += 36
conditional branching 40, 48, 50
conditional operator ?: 42
Console class object

ReadKey() method 23
ReadLine() method 24
WriteLine() method 17
Write() method 24

In
de

x
18

8

Console project, new 14
Console window colors 17
const keyword, constant declaration 30
constructor method 92, 116
continue statement, loop 54
correction options 99
C programming language 28
C# programming language 8

keywords 19
C++ programming language 8
creating menus 146
creating objects 114

D
data hiding, in classes 112
data types

casting 28
int, char, float, double, decimal, bool, string 22

date format specifiers 82
DateTime object

AddYears() method 82
DayOfWeek property 82
Now property 82
ToShortString() method 82

debugging code 102
Debug Menu Bar, Visual Studio IDE 102
Debug mode 16
Debug, Stop Debugging, Visual Studio IDE 180
decimal, data type 22
declaration

class 112
constant 30
method 60
variable 22

decrement operator -- 34, 52
default statement, switch 50
deploying apps 184
deployment, classic desktop app 166
derived class 118
Design view, Universal app 172, 177
DialogResult.No constant value 143
DialogResult.OK constant value 142, 144, 149
DialogResult.Yes constant value 143
Dictionary class object 57

Add() method 57
Key, Value, properties 57
Remove() method 57

division operator / 34
dock window, Visual Studio IDE 15
dot-prefixing 114
dot-suffixing 30, 70

double, data type 22
do-while loop 52
Dynamic Translation 9

E
elements, array index 26
else keyword 48
encapsulation, OOP 112
Enum class object, enumerator list 30

GetName() method 30
IsDefined() method 30
typeof() method 30

equality operator == 38, 74
error, red wavy underline 98
escape sequences, \n, \t 18, 37
escape sequences, \r\n\t 86
event-handler method 136
Excel spreadsheet, comma-separated values 94
Exception Assistant, Visual Studio IDE 100
Exception class, error-handling

GetType() method 107
explicit cast 122
eXtensible Application Markup Language (XAML) 170

F
fall-through, switch 50
false keyword (0) 38
File class

AppendAllText() method 88
Exists() method 86
ReadAllLines() method 90
ReadAllText() method 90
WriteAllLines() method 88
WriteAllText() method 86

FileNotFoundException 101
float, data type 22
FontDialog component 144
foreach-in statement 56
foreach loop construct 26
for loop 52
Form1() constructor method 160
Form Designer window, Visual Studio IDE 132

189

G
garbage collection 9
GetType() method 30
Graphical User Interface (GUI) 132
greater than operator > 38
greater than or equal to operator >= 38

H
Help system, Visual Studio IDE 108
hiding base class methods 122

I
IConvertible interface 100
if keyword 48
Immediate window, Visual Studio IDE 105
increment operator ++ 34, 52
index numbering, array 26
IndexOutOfRangeException 100
inequality operator != 38
inheritance, OOP 118
Insert Snippet feature, Visual Studio IDE 107
instance 26
instance declaration 113
Int16 value type 106

MaxValue property 107
Int32 value type 106
int, data type 22
IntelliSense 82
IntelliSense, Visual Studio IDE 160
interface adaptation, Universal app 182
Intermediate Language (IL) code 8
InvalidCastException 100
iteration, loop 52
iterator, foreach-in 56

J
Java programming language 8, 119
Jotter, example 146, 148
Just-In-Time (JIT) compilation 9

K
KeyValuePair class object 57
keywords 19

L
Label control 138
layout, Universal app 176
less than operator < 38
less than or equal to operator <= 38
ListBox control 140

Items property 141
literals, string 71
Local Machine, device option 180
local scope 60
Locals window, Visual Studio IDE 104
logical operators

&& logical AND 40
! logical NOT 40
|| logical OR 40

loop iterations, toggle 40
loop iterations, updater 52
loop structures

do-while construct 52
for construct 52
while construct 52

Lotto, example 154-168

M
MainPage.xaml.cs code-behind page 178
MainPage.xaml file, Universal app 177, 182
Make Horizontal Spacing Equal button, Visual Studio

IDE 159
manifest, security requirements 8
maximum or minimum assignment 42
Menu Bar, Visual Studio IDE 13
MenuStrip control

Smart Tag 146
MessageBoxButtons constant values 142
MessageBox class, dialog

Show() method 142
MessageBoxIcon constant values 142
method declaration 60
method overloading 64
Microsoft .NET framework 8

In
de

x
19

0

modal, MessageBox 142
modulus operator % 34
MouseDown event 135-136
MouseHover event 135-136
MouseUp event 135-136
multi-dimensional arrays 26
multiplication operator * 34

N
naming conventions 18, 22, 113, 114

variables 22
nested loops 52, 104
nested tests 48
new keyword 26, 92, 113, 122
New Project, Blank App (Universal Windows) 170
New Project, Console app 14
New Project, Windows Forms Application 132
NotImplementedException 143

O
Object Oriented Programming (OOP) 112
OpenFileDialog component 144, 148
operator precedence 28, 44
option boxes 140
out keyword 62
OverflowException 106
overloaded constructor method 120
overloading methods 64
override keyword 124, 126

P
parameters, passing values 62
parameters, specifying 60
parentheses () 28, 34
parity test 42
partial keyword 128
pass, loop 52
PictureBox control 144, 156

SizeMode property 145
PictureBoxSizeMode class

StretchImage property 145
placeholders, string 80
polymorphism, OOP 124

postfix, increment ++, decrement -- 34
prefix, increment ++, decrement -- 34
program dynamic properties 160
program fixed properties 156
program layout 158
program planning

purpose, functionality, components 154
program publishing 166
program runtime function 162
program testing 164
Properties window, Visual Studio IDE 15, 133, 138, 156

Events button 135
publish apps 185

Q
quote characters 22

R
RadioButton control 140
Random class object 162
Random object

Next() method 139
reading files 90
ReadLine() method 24
real-time errors 98
recursive method 66
refactoring code 66
ref keyword 62
relational operators

== != > < >= <= 38
Release Mode 16
remainder operator % 34
RichTextBox control 147
RichTextBoxStreamType object

PlainText property 149
runtime errors 106
runtime function, Universal app 178

191

S
SaveFileDialog component 148
ScrollBars property 147
sealed keyword 126
Security Certificate (.cer) file 185
Select Resources dialog, Visual Studio IDE 156
semicolon character 18
setter and getter methods 113-114
Show potential fixes, Visual Studio IDE 99
signature, method declaration 60
signing apps 166
Snap Lines, Visual Studio IDE 159
solution configuration 16
Solution Explorer, Visual Studio IDE 13, 15, 132, 171
sound files 150
SoundPlayer object

PlayLooping() method 151
Play() method 151
Stop() method 151

square brackets [] 26
Start button, Visual Studio IDE 133
Start Page, Visual Studio IDE 12
statement 17
statement termination 18
static modifier 112
Status Bar, Visual Studio IDE 13
StatusStrip control 147
Step Into button, Visual Studio IDE 102
Step Over button, Visual Studio IDE 103
Stop Debugging button, Visual Studio IDE 106, 165
StreamReader object 94

ReadLine() method 94
Read() method 94

StreamWriter object 92
WriteLine() method 92
Write() method 92

String class 70
Compare() method 74
CompareTo() method 74
Concat() method 74
Copy() method 76
CopyTo() method 76
Format() method 80, 82
IsNullOrEmpty() method 70
IsNullOrWhiteSpace() method 70
Join() method 74

string, data type 22
conversion to int data type 25

string format specifiers 80
String object

Contains() method 70
EndsWith() method 70

Equals() method 74
IndexOfAny() method 78
IndexOf() method 78
Insert() method 76
LastIndexOfAny() method 78
LastIndexOf() method 78
Length property 70
PadLeft() method 72
PadRight() method 72
Remove() method 76
Replace() method 76
Split() method 80
StartsWith() method 70
Substring() method 78
ToLower() method 72
ToUpper() method 72
TrimEnd() method 72
Trim() method 72
TrimStart() method 72

substring 78
subtraction operator - 34
switch keyword 50
syntax rules 18
System.Convert class

ToChar() method 48
ToDecimal() method 25
ToDouble() method 25, 48
ToInt16() method 106, 139
ToInt32() method 25

System.IO.File class 86
System.IO.StreamReader class 94
System.IO.StreamWriter class 92

T
ternary operator ?: 42
testing, Universal app 180
TextBox control 138
this keyword 114
throw keyword 143
Toolbar, Visual Studio IDE 13
Toolbox, Visual Studio IDE 13, 134
ToolStrip control 147
Tooltip, Visual Studio IDE 98
ToString() method 80
true keyword (1) 38
truncation 28
try-catch block 86, 106
type conversion 28

In
de

x
19

2

U
undock window, Visual Studio IDE 15
Unicode 28-29
Universal, example 170-186
Universal Windows App Development Tools 170
Universal Windows Application (UWA) 170
Universal Windows Platform (UWP) 170
user input 24
using construct 92, 94

V
variable 22

declaration 22
initialization 23

variable scope 60
var keyword 30
virtual keyword 124
Visual Assets 184
Visual Basic programming language 9
Visual Studio Community edition, installation 10
Visual Studio Integrated Development Environment

(IDE) 10, 12
void keyword 60

W
warning, green wavy underline 98
Watch window, Visual Studio IDE 102
while loop 52, 54
white space (tab, space, newline) 18
Windows Forms Application, new 132
Windows system dialogs 144
Window Style, MaximizeBox 159
Window Style, MinimizeBox 159
WriteLine() method 17, 74
Write() method 24, 74
writing files 86

X
XAML component elements

<AdaptiveTrigger>
MinWindowWidth attribute 182

<Button> 173
Content attribute 176
IsEnabled attribute 176
x:Name attribute 173

<Grid> 173
<Image> 173

Source attribute 174
Width attribute 176

<Setter>
Target attribute 182
Value attribute 182

<StackPanel> 173
HorizontalAlignment attribute 176
Orientation attribute 173
VerticalAlignment attribute 176
x:Name attribute 173

<TextBlock> 173
Margin attribute 176
Text attribute 176

<TextBox> 173
<VisualState>

x:Name attribute 182
<VisualStateGroup> 182
<VisualStateManager.VisualStateGroups> 182
<VisualState.Setters> 182
<VisualState.StateTriggers> 182

XAML view, Universal app 172
XML Web services 8

Z
zero-based index 26

C# Essentials

In Easy Steps ebooks
now available to download onto your

computer, tablet and smartphone from

 www.ineasysteps.com

Liked this book?
Learn more in easy steps

New for kids

Follow us or visit www.ineasysteps.com
for title updates, special offers and
free learning resources

Get the kids
coding with

The QuestKids!

Common Data Types
 int char float double
 decimal bool string

Variable Declaration
 data-type variable-name = value

Array Declaration
 data-type[] array-name =
 { value, value, value }

Comments
 // Single-line comment
 /*
 Multi-line comment
 */

Arithmetic Operators
 + Add (or concatenate strings)
 - Subtract
 * Multiply
 / Divide
 % Modulus
 ++ Increment
 -- Decrement

Comparison Operators
 == Equal
 != Not equal
 < Less than
 <= Less or equal
 > Greater than
 >= Greater or equal

Logical Operators
 && Logical AND
 || Logical OR
 ! Logical NOT

Assignment Operators
 = Assign
 += Add and assign
 -= Subtract and assign
 *= Multiply and assign
 /= Divide and assign
 %= Modulus and assign

Ternary Operator
 (condition) ? statement : statement

If Else
 if (condition)
 { statements }
 else
 { statements }

Switch
 switch (expression)
 {
 case value : statements ; break ;
 case value : statements ; break ;
 default : statements ; break ;
 }

While Loop
 while (condition)
 { statements }

Do While Loop
 do
 { statements } while (condition)

For Loop
 for (initializer ; condition ; updater)
 { statements }

Foreach Loop
 foreach (data-type variable in collection)
 { statements }

Error Handling
 try
 { statements }
 catch (Exception error)
 { statements }

Method
 public void method-name (parameters)
 {
 statements
 }

Class
 access-specifier class Name
 {
 member variables
 member methods
 }

C
#

 P
R

O
G

R
A

M
M

IN
G

 IN
 EA

SY
 STEP

S

Why choose this book?

It’s easy to follow
Clear, step-by-step instructions
make learning simple.

It’s in full color
This book’s printed in color to make it
simpler to use and easier on the eye.

And it’s fantastic value
Do we need to say any more?

£11.99 UK / $17.99 US

www.ineasysteps.com

It’s fully illustrated
We don’t just tell you how to do it,
we also show you how.

C# Programming in easy steps will teach you
every aspect of the C# language you’ll need
to produce professional programming results.
Assuming no prior knowledge, it shows how
to install the free edition of Visual Studio and
create an environment to start executing your own
programs. By using clear syntax-highlighted code,
which is free to download, this primer:

• Demonstrates all the C# language basics
including variables, arrays, logic, looping,
methods and classes.

• Covers Object Oriented Programming principles.

• Shows how to use this acquired knowledge
to create graphic programs for traditional PC
Desktop apps, and also as Universal apps for
multiple devices.

• Includes a chapter on detecting and debugging
errors in C# programs.

A trusted source for anyone who wants to learn
C# programming efficiently and effectively!

It’s written in plain English
Put off by the jargon? Don’t worry,
we keep things straightforward.

Categories: Computers/Programming

FULLY ILLUSTRATED

EASY TO FOLLOW

PLAIN ENGLISH

IN FULL COLOR

3rd
Edition

M i k e M c G r a t h

Programming
modern coding with C# 10 and .NET 6

C#
Updated for Visual Studio 2022

3rdEdition

FOR BEGINNERS AND EXPERIENCED PROGRAMMERS

EXAMPLES AND DEMONSTRATIONS

CREATE YOUR OWN CODING

OBJECT ORIENTED PROGRAMMING

Let these icons make it even easier

to spice up your learning

wards you off potential
danger!

highlights something worth
remembering

	Cover_C#Programming3rd_192pg_90gsm_FC
	Cover_C#Programming3rd_192pg_90gsm_IFC
	0 Pages1-2
	TOC
	Getting started
	Introducing C#
	Installing Visual Studio
	Exploring the IDE
	Starting a Console project
	Writing your first program
	Following the rules
	Summary
	Storing values
	Creating variables
	Reading input
	Employing arrays
	Casting data types
	Fixing constants
	Summary
	Performing
operations
	Doing arithmetic
	Assigning values
	Comparing values
	Assessing logic
	Examining conditions
	Setting precedence
	Summary
	Making statements
	Branching with if
	Switching branches
	Looping for
	Looping while
	Iterating for each
	Summary
	Devising methods
	Creating function
	Passing arguments
	Overloading methods
	Refactoring code
	Summary
	Handling strings
	Discovering string features
	Manipulating strings
	Joining and comparing strings
	Copying and swapping strings
	Finding substrings
	Formatting strings
	Formatting date strings
	Summary
	Accessing files
	Writing a file
	Appending to a file
	Reading text and lines
	Streaming lines
	Manipulating input and output
	Summary
	Solving problems
	Detecting real-time errors
	Fixing compile-time errors
	Debugging code
	Setting breakpoints
	Catching run-time errors
	Getting help
	Summary
	Creating objects
	Encapsulating data
	Creating multiple objects
	Initializing class members
	Inheriting class properties
	Calling base constructors
	Hiding base methods
	Directing method calls
	Providing capability classes
	Employing partial classes
	Summary
	Controlling events
	Starting a Forms project
	Adding visual controls
	Writing functional code
	Gathering text entries
	Ticking option boxes
	Showing user messages
	Calling system dialogs
	Creating application menus
	Making menus work
	Importing audio resources
	Summary
	Building an application
	Planning the program
	Assigning fixed properties
	Designing the layout
	Setting dynamic properties
	Adding runtime function
	Testing the program
	Publishing the application
	Summary
	Targeting devices
	Starting a Universal project
	Inserting page components
	Importing program assets
	Designing the layout
	Adding runtime function
	Testing the program
	Adjusting the interface
	Deploying the application
	Summary
	Index

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	INDEX
	Cover_C#Programming3rd_192pg_90gsm_IBC
	Cover_C#Programming3rd_192pg_90gsm_BC

