
Contents

1

3

2

Getting started 7

Introducing Unix 8
Discovering the shell 10
Understanding commands 12
Navigating directories 14
Dealing wildcards 16
Recognizing metacharacters 18
Quoting phrases 20
Getting help 22
Summary 24

Managing files 25

Creating folders 26
Arranging files 28
Adding links 30
Examining properties 32
Comparing files 34
Finding files 36
Compressing files 38
Making backups 40
Summary 42

Handling text 43

Reading and writing 44
Redirecting output 46
Seeking strings 48
Sorting order 50
Arranging columns 52
Matching expressions 54
Editing text 56
Inserting text 58
Summary 60

5

6

4

7

Editing commands 61

Amending characters 62
Changing lines 64
Completing commands 66
Adjusting characters 68
Inserting text 70
Repeating history 72
Fixing commands 74
Expanding history 76
Summary 78

Customizing environment 79

Switching users 80
Setting permissions 82
Adding colors 84
Creating aliases 86
Setting options 88
Modifying variables 90
Changing prompts 92
Adjusting paths 94
Summary 96

Controlling behavior 97

Disabling defaults 98
Formatting output 100
Reading input 102
Substituting commands 104
Managing jobs 106
Killing processes 108
Communicating routines 110
Relating shells 112
Summary 114

Performing operations 115

Storing values 116
Filling arrays 118
Handling strings 120
Doing arithmetic 122
Assigning values 124
Comparing values 126
Assessing logic 128
Matching patterns 130
Summary 132

8

9

Directing flow 133

Examining conditions 134
Providing alternatives 136
Testing cases 138
Iterating for 140
Selecting options 142
Looping while 144
Looping until 146
Breaking out 148
Summary 150

Employing functions 151

Creating scripts 152
Displaying variables 154
Inputting values 156
Providing options 158
Restricting scope 160
Repeating calls 162
Locating bugs 164
Randomizing numbers 166
Summary 168

Handy reference 169

Special characters 170
Commands A-D 172
Commands D-F 174
Commands G-L 176
Commands L-S 178
Commands S-U 180
Commands U-Z 182
Date formats 184
Shell variables 186

Index 187

10

Preface
The creation of this book has been for me, Mike McGrath, an exciting opportunity to
demonstrate the powerful command-line shell functionality available in almost any modern
Unix-family operating system. I sincerely hope you enjoy discovering the exciting possibilities
of the command-line and have as much fun with it as I did in writing this book.

In order to clarify script code listed in the steps given I have adopted certain colorization
conventions. Interpreter directives and comments are colored green, shell components are blue,
literal string and numeric values are black, user-specified variable and function names are red.
Additionally a colored icon and a file name appears in the margin alongside the script code to
readily identify each particular script:

For convenience I have placed source code files from the examples featured in this book into a
single ZIP archive. You can obtain the complete archive by following these three easy steps:

l1 Open a web browser and navigate to www.ineasysteps.com then select the menu
entitled “Free Resources” and choose the “Downloads” item

l2 Next find “Unix in easy steps” in the list then click on the hyperlink entitled
“All Code Examples” to download the archive

l3 Now extract the contents to any convenient location, such as your home directory

The screenshots that accompany each example illustrate the actual output produced by precisely
executing the commands listed in the easy steps:

#!/bin/bash
A Script To Greet The User.

echo -n ‘Please enter your name: ‘
read username
echo “Welcome to $@ , $username ”

#
SH

greet.sh

Welcome to the exciting

world of Unix. This chapter

introduces the Bash

command interpreter shell

and demonstrates essential

basic commands.

Introducing Unix

Discovering the shell

Understanding commands

Navigating directories

Dealing wildcards

Recognizing metacharacters

Quoting phrases

Getting help

Summary

8

10

12

14

16

18

20

22

24

Getting started1

8
G

et
ti

ng
 s

ta
rt

ed

Introducing Unix
Unix is a multi-user, multi-tasking computer operating system
developed at AT&T’s Bell Labs. Way back in the mid 1960s Bell
Labs, the Massachusetts Institute of Technology and General
Electric co-developed a mainframe multi-tasking operating system
named “Multics”. The Multics operating system became large
and complex so Bell Labs withdrew from the project. A group
from Bell Labs, notably Brian Kernighan and Dennis Ritchie,
wanted to create something with many of the same multi-tasking
capabilities but simpler to use. They named it “Unix” as a joke,
saying “whatever Multics is many of, Unix is just one of ”.

In 1973 Kernighan and Ritchie created the “C” high-level
programming language and rewrote Unix in their new language.
This was a huge leap from the assembly code used in all other
operating system development at that time. The migration from
assembly code to the C language produced much more portable
software that was easily ported to other computing platforms.
AT&T made the Unix source code available to universities,
which created a great amount of academic interest, particularly
at the University of California, Berkeley. Their Computer Science
Research Group added new capabilities then released their version
of Unix as “BSD” (Berkeley Software Distribution):

• BSD Unix proved very popular and was adopted by many
commercial startups including Sun Microsystems who used
it as the basis for SunOS. Sun later created the Solaris
Unix operating system and were acquired by the Oracle
Corporation in 2010 - since then that system has been
known as Oracle Solaris.

• BSD Unix was adopted for the development of the Darwin
operating system – providing the core set of components
upon which Apple’s OS X and iOS are based.

• BSD Unix also proved interesting to a 21-year old student at
the University of Helsinki. He released his own lightweight
Unix variant specifically for PCs. His name was Linus
Torvalds and he named his operating system “Linux” –
(LINUs’ uniX). Many variations of this popular release have
subsequently been developed including Red Hat, Ubuntu, and
the Raspbian OS for the Raspberry Pi device.

“Multics” (MULTiplexed
Information and
Computing Service)
was the forerunner
to “Unics” (UNiplexed
Information and
Computing Service) –
a.k.a. “Unix”.

Only Oracle Solaris,
Apple OS X, HP-UX and
IBM’s AIX systems are
fully recognized as Unix
– all others are more
properly referred to as
“Unix-like” systems.

9
...cont’d

Meeting the kernel
At the heart of every variant of Unix is the “kernel” – a program
that gets loaded into memory at boot-up time and manages the
system until shutdown. The kernel controls hardware devices,
schedules tasks, and manages memory. All other programs reside
on the hard disk drive and get loaded into memory by the kernel.
The kernel executes them and cleans up the system on completion.

Meeting the shell
The “shell” is a utility program that starts up when you log on to
a Unix system. It allows the user to interact with the kernel by
interpreting commands that are typed at the command line or
read from a script file.

Over time, several shell programs have
been developed for Unix including
the Bourne shell (AT&T), the C shell
(Berkeley), and the Korn shell
(a superset of the Bourne shell).

The most popular shell today is “Bash” – the Bourne again shell.
Bash is an enhanced Bourne shell and is the default shell on
Oracle Solaris, Linux and Mac OS X operating systems. This
book demonstrates how to use the Bash shell to interact with the
kernel from the command line and from scripts.

pwd

exit clear

rm

cd

mkdir echo

man

find

who

du

cat

sudo

mvcp

ls

The New icon pictured
above indicates a new
or enhanced feature
introduced with the
latest version of Bash.

The shell program
allows the user to
communicate with the
kernel at the heart of
their Unix system.

10
G

et
ti

ng
 s

ta
rt

ed

Discovering the shell
When you initially log in to a Unix system, or open a new
terminal window, a command prompt appears indicating that a
shell process has been started for you automatically. This shell will
typically be the Bash shell program.

The name of the shell in use can be seen in information about
the current terminal process by issuing a ps $$ command. The
output from this command should confirm Bash as the current
shell under its COMMAND heading. If another shell is listed you
can switch to the Bash shell simply by issuing a bash command
if it is available. In the event that the Bash program is not already
available it must be installed by you or the system administrator.

Once you have confirmed that Bash is the current shell you can
see its version information by issuing a bash --version command:

l1 Launch a Terminal window then at the prompt exactly
type ps $$ and hit Return to discover the current shell

l2 If Bash is not the current COMMAND shell listed, type
bash at the prompt then hit Return to switch to Bash

l3 At the prompt, exactly type ps $$ once more and hit
Return to discover if Bash is now the current shell

Bash is part of the
“GNU” Unix-like
operating system – find
details and download
instructions online at
gnu.org/software/bash.

Unix is case-sensitive so
the commands MUST
be capitalized exactly as
listed. For example, the
ps command must use
only lowercase letters.

11
...cont’d

l4 Once you have confirmed you are indeed using the Bash
shell, at the prompt exactly type bash --version then hit
Return to discover the current Bash version

l5 Now, issue a clear command (or press Ctrl + L keys) to
clear the terminal screen back to a command prompt

Notice that the default Bash command prompt comprises several
pieces of information including the user’s name (shown here
as user) and the host system name (shown here as host). These
details can also be displayed using the whoami and hostname
commands:

l6 Type whoami then hit Return to see your user name, then
type hostname and hit Return to see your computer name

l7 Finally issue an exit command (or press Ctrl + D keys) to
end the session and thereby close the Terminal window

You can also use the
command which bash
to detect Bash. This
should respond with the
directory location of the
Bash program if present
on the system.

The whoami and
hostname commands
are mostly useful when
the command prompt
has been customized to
hide the user name and
host name.

12
G

et
ti

ng
 s

ta
rt

ed

Understanding commands
When the user hits the Return key after typing a command at
a shell prompt it adds a final invisible newline character. This
denotes the end of the command and indicates to the shell that
it should then attempt to interpret that command. The Bash
interpreter first reads the command line as “standard input” (stdin)
and splits it into separate words broken by spaces or tabs. Each of
these words is known as a “token”. The interpreter next examines
the first token to see if it is one of the shell’s “built-in” commands
or an executable program located on the file system.

When the first token is recognized as a built-in shell command,
the interpreter executes that command otherwise it searches
through the directories on a specified path to find a program of
that name. The interpreter will then execute a recognized built-in
command or recognized program and display any result in the
Terminal as “standard output” (stdout). Where neither is found,
the interpreter will display an error message in the Terminal as
“standard error” (stderr).

The Bash type command can be used to determine whether a
token is recognized as a built-in shell command, or the location of
a recognized program, or display a message if none can be found:

l1 At a command prompt, type type clear then hit Return to
see the location of the clear program on the filesystem

l2 Next, type type exit then hit Return to discover that exit
is in fact a built-in shell command

l3 Now, type type nosuch then hit Return to see this
token cannot be found to match a built-in command or
program name

Each Unix program
can accept standard
input and can produce
standard output
and standard error
messages.

You can also use the
built-in command hash
to see a list of your
recently issued program
commands and the
number of times
executed (hits).

13
...cont’d

You will often want to
suppress the automatic
newline with echo -n
when printing a request
for user input.

The Bash built-in echo command simply reads all following
tokens from standard input then prints them as standard output -
unless they are recognized as a command “option”. Many built-in
commands and programs accept one or more options that specify
how they should be executed. Typically, an option consists of a
dash followed by a letter. For example, the echo command accepts
a -n option that denotes it should omit the newline character that
it automatically prints after other output:

l4 At a prompt, type echo followed by some text then hit
Return to see that text printed with an added newline

l5 Now, type echo -n followed by some text then hit Return
to see that text printed without an added newline

In addition to the built-in shell commands the Bash shell also
contains a number of built-in shell variables. These are named
“containers” that each store a piece of information and their names
use all uppercase characters. To access the information stored
within a variable its name must be prefixed with a $ dollar sign:

l6 At a prompt, type echo $SHELL to see the location of the
Bash interpreter program on the filesystem

l7 Now, type echo $BASH_VERSION to see the version
number of the Bash shell interpreter

You can also use the
command echo $PATH
to discover which
directories the Bash shell
searches when you issue
any command.

14
G

et
ti

ng
 s

ta
rt

ed

Navigating directories
The Unix filesystem is arranged as a tree-like hierarchical structure
of directories and files with the “root” directory at its base. The
root directory is addressed simply as a forward-slash character /.
Sub-directories within the root directory are addressed by
appending their directory name to the forward-slash. For example,
the “home” directory has the address /home. Directories within
those sub-directories are addressed by appending another forward-
slash and their directory name. For example, a “user” directory
within the “home” directory has the address /home/user.
Similarly, files in directories are addressed by appending another
forward-slash and the filename, such as /home/user/filename.
This hierarchical address system can therefore easily describe
the “absolute path” of any directory or file from the root base.
Additionally, contents of the current directory and its sub-
directories can be addressed by name using their “relative path”.
For example, a sub-directory named “user” within /home can be
addressed from /home simply as user, and a file within that sub-
directory can be addressed as user/filename.

When the user launches a Terminal window it conveniently
sets the filesystem location to that user’s home directory. This is
typically a directory bearing that user’s name located in /home.
For example, for a user named “Carole” at /home/Carole. The user
can ascertain their current location at any time with the pwd
(print working directory) command and list the contents of that
directory with the ls command. Contents of sub-directories can be
listed simply by specifying their address to the ls command:

l1 Launch a Terminal and type pwd at the prompt then hit
Return to see the absolute path address of your location

l2 Next, type ls then hit Return to see the contents of the
current directory

l3 Now, specify the relative address of an immediate child
sub-directory to the ls command to see nested directories
– for example, type ls Documents then hit Return

l4 Then, specify the relative address of a nested sub-directory
to the ls command to see that directory’s contents
– for example, type ls Documents/Pictures then hit Return

As Unix is case-sensitive
the names of directories
and files in addresses
must be correctly
capitalized.

/

/usr

/sbin

/root

/mnt /opt

/etc

/home

/bin

/dev

/lib

/boot /proc
/initrd

/tmp
/var

15

Repeatedly addressing contents of a sub-directory by path can
become tedious. It is more convenient to change location into
that sub-directory so its contents can easily be addressed by
their name alone. The directory to move into can be specified to
the cd command as either an absolute or relative path address.
Additionally, the user’s home directory can be addressed using
a tilde ~ alias and the parent of the current directory can be
addressed using a .. alias. By default, the Bash prompt string
displays the current directory just before the $ sign:

l5 Type cd Documents/Pictures then hit Return to see the
prompt change to display the nested sub-directory location

l6 Next, type pwd then hit Return to confirm the absolute
path address of that new location

l7 Now, type cd .. then hit Return to move to the parent
directory and see the prompt string change once more

l8 Finally, type cd ~ then hit Return to go back to your
home directory and see the prompt string change again

...cont’d

You can also use the
command cd - to return
to the previous directory
you were located in.

The Documents sub-
directory here could
also be addressed by its
absolute path of
/home/user/Documents.

16
G

et
ti

ng
 s

ta
rt

ed

Dealing wildcards
The ls command, introduced on the previous page, will list all
files and folders in the current or specified directory, except
special hidden files whose names begin with a . period character.
Typically, these are system files such as a .bashrc hidden file
in the user’s home directory containing the shell configuration
details. Hidden files can be included in the list displayed by the ls
command by adding a -a option, so the command becomes ls -a.

Optionally, a filename pattern can be supplied to the ls command
so it will list only filenames matching the specified pattern.
Special “wildcard” characters, described in the table below, can be
used to specify the filename pattern to be matched:

Wildcard: Matches:

? Any single character
* Any string of characters

[set] Any character in set
[!set] Any character not in set

You can include a
hyphen in the set
pattern by placing it first
or last in the list within
the square brackets.

If you wish to delete a
directory remember that
it may contain hidden
files – use the ls -a
command to check.

The ? wildcard is used to specify a pattern that matches filenames
where only one single character may be unknown. For example,
where the ls command lists file.a, file.b, and file.exe the command
ls file.? would list only file.a and file.b – not file.exe.

More usefully, the * wildcard is used to specify a pattern that
matches filenames where multiple characters may be unknown.
For example, where ls lists img.png, pic.png, and pic.jpg the
command ls *.png would list only img.png and pic.png – not
img.jpg.

The [set] wildcard construct is used to specify a pattern that
matches a list or a range of specified characters. For example,
where the ls command lists doc.a, doc.b, doc.c, and doc.d the
command ls doc.[ac] would list only doc.a and doc.c – as this
pattern specifies a list of two possible extensions to be matched.
In the same directory the command ls doc.[a-c] would, however,
list doc.a, doc.b, and doc.c – as the pattern specifies a range of
three possible extensions to be matched. Placing an exclamation
mark at the start of a set pattern lists files not matched. For
example, here the command ls doc[!a-c] would list only doc.d.

17
...cont’d

In executing commands containing wildcards, the shell first
expands the wildcard matches and substitutes them as a list of
“arguments” to the command. So the command ls doc.[a-c] might,
in effect, become ls doc.a doc.b doc.c before the list gets printed.
This is apparent in the error message that gets displayed when no
matches are found. For example, ls non* might produce the error
message non*: No such file or directory – as non* is the argument:

l1 Type ls at the prompt then hit Return to see all unhidden
files in the current working directory

l2 Next, type ls doc.? then hit Return to see all files named
“doc” that have a single-letter file extension

l3 Now, type ls *.c then hit Return to see all files of any
name that have a “.c” file extension

l4 Type ls *.[a-c] then hit Return to see all files of any name
that have a “.a”, “.b” or “.c” file extension

l5 Now, type ls *.[!a-c] then hit Return to see all files of any
name that do not have a “.a”, “.b” or “.c” file extension

l6 Finally, type ls non* then hit Return to see an error
message reporting no matches

The process of pattern
matching with wildcards
demonstrated here is
commonly known as
“globbing” – a reference
to global wildcard
expansion.

Wildcards can also be
used for pathname
expansion when
specifying addresses –
for example ls ~/D*.

18
G

et
ti

ng
 s

ta
rt

ed

Recognizing metacharacters
Just as the special wildcard characters ? * [] can be used to
perform pathname expansion, plain strings can be expanded using
{ } brace characters. These may contain a comma-separated list of
substrings that can be appended to a specified prefix, or prepended
to a specified suffix, or both, to generate a list of expanded strings.
The brace expansions can also be nested for complex expansion.
Additionally, brace expansion can produce a sequence of letters or
numbers by specifying a range separated by .. between the braces:

l1 At a prompt, type echo b{ad,oy} then hit Return to see
two expanded strings – appended to the specified prefix

l2 Next, type echo {ge,fi}t then hit Return to see two
expanded strings – prepended to the specified suffix

l3 Now, type echo s{i,a,o}ng then hit Return to see four
expanded strings – both appended and prepended

l4 Type echo s{tr{i,o},a,u}ng then hit Return to see four
complex expanded strings – appended and prepended

l5 Next, type echo {a..z} then hit Return to see an expanded
letter sequence of the lowercase alphabet

l6 Finally, type echo {1..20} then hit Return to see an
expanded numeric sequence from 1 to 20

Bash version 4
introduced zero-padded
brace expansion so that
echo {001..3} produces
001 002 003.

There must be no
spaces within the braces
or between the braces
and each specified prefix
and suffix.

19
...cont’d

Metacharacter: Meaning:

~ Home directory
` Command substitution (old style)
Comment
$ Variable expression
& Background job
* String wildcard
(Start of subshell
) End of subshell
\ Escape next character
| Pipe
[Start of wildcard set
] End of wildcard set
{ Start of command block
} End of command block
; Pipeline command separator
‘ Quote mark (strong)
“ Quote mark (weak)
< Redirect input
> Redirect output
/ Pathname address separator
? Single-character wildcard
! Pipeline logical NOT

Notice that the semi-
colon ; character allows
two commands to be
issued on the same line.
For example, type
echo {a..z} ; echo {1..9}
then hit Return.

Some of the
metacharacters in
this table have been
introduced already but
others are described
later in this book.

The wildcards ? * [] and braces { } are just some examples of
 “metacharacters” that have special meaning to the bash shell. The
table below lists all metacharacters that have the special meaning
described when used in commands at a shell prompt only – the
same characters can have other meanings when used in other
situations, such as in arithmetical expressions.

20
G

et
ti

ng
 s

ta
rt

ed

Quoting phrases
The metacharacters that have special meaning to the Bash shell
can be used literally, without applying their special meaning, by
enclosing them within a pair of ‘ ‘ single quote characters to form
a quoted phrase. For example, to include the name of a shell
variable in a phrase without interpreting its value:

l1 At a prompt, type echo Processed By: $SHELL then hit
Return to see the shell variable get interpreted in output

l2 Now, type echo ‘Processed By: $SHELL’ then hit Return to
see the shell variable printed literally in output

The newline \n and
tab \t sequences can
be included in phrases
if preceded by a
backslash. For example,
echo \\nNEWLINE \\tTAB.

Alternatively, the significance of the leading $ metacharacter of a
shell variable can be ignored if preceded by a \ backslash character
to “escape” it from recognition as having special meaning:

l3 At a prompt type echo Processed By: $SHELL then hit
Return to see the shell variable get interpreted in output

l4 Now, type echo Processed By: \$SHELL then hit Return to
see the shell variable printed literally in output

Always enclose phrases
you want to use literally
within single quotes to
avoid interpretation.

21
...cont’d

It is necessary to precede a single quote character with a \
backslash when it is used as an apostrophe, so it is not interpreted
as an incomplete quoted phrase. An incomplete quoted phrase or
a \ backslash at the end of a line allows a command to continue
on the next line as they escape the newline when you hit Return:

l5 At a prompt, type echo It\’s escaped then hit Return to
see the apostrophe appear in output

l6 Next, type echo Continued \ then hit Return, type text
written along \ then hit Return, and type several lines
then hit Return to see the continued phrase in output

Double quote marks “ “ are regarded as weak by the Bash shell
as they do allow the interpretation of shell variables they enclose.
They can, however, be useful to print out a quoted string if the
entire string (and its double quotes) are enclosed in single quotes:

l7 Type echo “Interpreted With $SHELL” then hit Return to
see the shell variable get interpreted in unquoted output

l8 Type echo ‘“Interpreted With $SHELL”’ then hit Return to
see the shell variable printed literally in quoted output

You could alternatively
escape double quote
characters with a
backslash to print them
in output. For example,
echo \”With \$SHELL\”.

Notice that the shell
prompt string changes
to a > to indicate it is
awaiting further input.

22
G

et
ti

ng
 s

ta
rt

ed

Getting help
Bash includes an online help system for its built-in commands.
Information on all its built-in commands can be displayed using
the help command and help | more can be used to display just
one screen at a time. A command name can be specified to
discover information about that particular command:

l1 At a prompt, type help | more then hit Return to see all
built-in bash commands and their options

Bash version 4
introduced two new
help options; help
-d displays a short
description and help
-m displays information
in a manual page-like
format.

The | character is a
“pipe” that allows
output to be redirected
– here output is sent
to the more command.
Pipelines are described
in detail on page 46.

l2 Hit Return to scroll down the screen one line at a time or
type q and hit Return to quit help and return to a prompt

l3 Now, type help echo and hit Return to display
information about the Bash shell built-in echo command

23
...cont’d

You can use the type
command, described
on page 12, to discover
whether a command
is a shell built-in or its
filesystem location.

You can also use the
info command as an
alternative to man.

Information about all commands, both shell built-in commands
and those other commands that are actually programs located on
the filesystem, can be found on any Unix-based operating system
in the famous Manual Pages. The name of any command can
be specified to the man command to display the manual page
describing that command and its options. Alternatively, a -f option
can be used to display the location and brief description:

l4 At a prompt, type man ps then hit Return to see the
manual page for the ps command automatically paginated

l5 Hit Return to scroll down the screen one line at a time or
type q and hit Return to return to a prompt

l6 Now, type man -f ps and hit Return to display the
filesystem location and description of the ps command

24
G

et
ti

ng
 s

ta
rt

ed

• Bash is a command interpreter shell that enables the user to
interact with the kernel of any Unix-based operating system

• The command ps $$ displays the current process information
and can be used to confirm Bash as the current shell

• User and host names can be displayed with the whoami and
hostname commands

• A Terminal window can be cleared using the clear command
and closed using the exit command

• The type command can be used to determine whether a token
is a built-in shell command or a recognized program

• Standard input can be printed on standard output using the
shell built-in echo command

• Shell variables $SHELL and $BASH_VERSION store the
filesystem location and version number of the Bash program

• The pwd command displays the current working directory
address and the ls command can be used to list its contents

• Absolute and relative addresses, or ~ and .. aliases, can be
specified to the cd command to change directory location

• Wildcards ? , * , and [] can be used to specify filename
patterns to match a single character, a string, or a set

• Brace expansion combines each item in a comma-separated
list within { } characters to a specified outer prefix and suffix

• Brace expansion can also produce a sequence of letters or
numbers from a range separated by .. within { } characters

• Wildcards ? , * , [] and braces { } are just some examples of
metacharacters that have special meaning to the Bash shell

• Enclosing with single quotes ‘ ‘ or prefixing with a backslash \
allows metacharacters to be displayed literally

• Surrounding phrases with weak “ “ double quote characters
allows the shell to perform interpretation

• Online help can be found for any command using the man or
info commands and for built-ins using the help command

Summary

	TOC_web
	01_web

