
ContentsContents

Getting Started	 7	

Introducing the C language	 8
Installing a C compiler	 10
Writing a C program	 12
Compiling a C program	 14
Understanding compilation	 16
Summary	 18

Storing Variable Values	 19	

Creating program variables	 20
Displaying variable values	 22
Inputting variable values	 24
Qualifying data types	 26
Using global variables	 28
Registering variables	 30
Converting data types	 32
Creating array variables	 34
Describing dimensions	 36
Summary	 38

Setting Constant Values	 39	

Declaring program constants	 40
Enumerating constant values	 42
Creating a constant type	 44
Defining constants	 46
Debugging definitions	 48
Summary	 50

Performing Operations	 51	

Doing arithmetic	 52
Assigning values	 54
Comparing values	 56
Assessing logic	 58
Examining conditions	 60
Measuring size	 62
Comparing bit values	 64

4

1

2

3

Flagging bits	 66
Understanding precedence	 68
Summary	 70

Making Statements	 71	

Testing expressions	 72
Branching switches	 74
Looping for a number	 76
Looping while true	 78
Breaking out of loops	 80
Going to labels	 82
Summary	 84

Employing Functions	 85	

Declaring functions	 86
Supplying arguments	 88
Calling recursively	 90
Placing functions in headers	 92
Restricting accessibility	 94
Summary	 96

Pointing to Data	 97	

Accessing data via pointers	 98
Doing pointer arithmetic	 100
Passing pointers to functions	 102
Creating arrays of pointers	 104
Pointing to functions	 106
Summary	 108

Manipulating Strings	 109	

Reading strings	 110
Copying strings	 112
Joining strings	 114
Finding substrings	 116
Validating strings	 118
Converting strings	 120
Summary	 122

8

7

5

6

Flagging bits	 66
Understanding precedence	 68
Summary	 70

Making Statements	 71	

Testing expressions	 72
Branching switches	 74
Looping for a number	 76
Looping while true	 78
Breaking out of loops	 80
Going to labels	 82
Summary	 84

Employing Functions	 85	

Declaring functions	 86
Supplying arguments	 88
Calling recursively	 90
Placing functions in headers	 92
Restricting accessibility	 94
Summary	 96

Pointing to Data	 97	

Accessing data via pointers	 98
Doing pointer arithmetic	 100
Passing pointers to functions	 102
Creating arrays of pointers	 104
Pointing to functions	 106
Summary	 108

Manipulating Strings	 109	

Reading strings	 110
Copying strings	 112
Joining strings	 114
Finding substrings	 116
Validating strings	 118
Converting strings	 120
Summary	 122

Building Structures	 123	

Grouping in a structure	 124
Defining type structures	 126
Using pointers in structures	 128
Pointing to structures	 130
Passing structures to functions	 132
Grouping in a union	 134
Allocating memory	 136
Summary	 138

Producing Results	 139	

Creating a file	 140
Reading & writing characters	 142
Reading & writing lines	 144
Reading & writing entire files	 146
Scanning filestreams	 148
Reporting errors	 150
Getting the date and time	 152
Running a timer	 154
Generating random numbers	 156
Displaying a dialog box	 158
Summary	 160

Reference Section	 161	

ASCII character codes	 162
Input & output functions	 164
Character test functions	 173
String functions	 174
Math functions	 176
Utility functions	 178
Diagnostic functions	 180
Argument functions	 180
Date & time functions	 181
Jump functions	 184
Signal functions	 184
Limit constants	 185
Float constants	 186

Index	 187	

9

10

+

Preface
The creation of this book has provided me, Mike McGrath, a welcome opportunity to update
my previous books on C programming with the latest techniques. All examples I have given in
this book demonstrate C features supported by current compilers on both Windows and Linux
operating systems, and the book’s screenshots illustrate the actual results produced by compiling
and executing the listed code.

Conventions in this book
In order to clarify the code listed in the steps given in each example, I have adopted certain
colorization conventions. Components of the C language itself are colored blue; numeric and
string values are red; programmer-specified names are black; and comments are green, like this:

/* Store then output a text string value. */
char *myMessage = “Hello from C” ;
printf(myMessage) ;

Additionally, in order to identify each source code file described in the steps, a colored icon and
file name appears in the margin alongside the steps:

I sincerely hope you enjoy discovering the powerful expressive possibilities of C programming
and have as much fun with it as I did in writing this book.

Mike McGrath

Grabbing the source code
For convenience I have placed source code files from the examples featured in this book into a
single ZIP archive, which you can obtain by following these easy steps:

l1	 Browse to www.ineasysteps.com then navigate to Free Resources and choose the
Downloads section

l2	 Find C Programming in easy steps, 5th edition in the list, then click on the hyperlink
entitled All Code Examples to download the archive

l3	 Now, extract the archive contents to any convenient location on your computer

main.c header.h

Welcome to the world of C.

This chapter demonstrates

how to create a C program

in text, then how to compile

it into executable byte form.

Introducing the C language

Installing a C compiler

Writing a C program

Compiling a C program

Understanding compilation

Summary

8

10

12

14

16

18

Getting Started1

8
G

et
ti

ng
 S

ta
rt

ed

Programs written 20
years ago in C are still
just as valid today as
they were back then.

Introducing the C language

Dennis M Ritchie,
creator of the C
programming language.

C is a compact, general-purpose computer programming language
that was originally developed by Dennis MacAlistair Ritchie
for the Unix operating system. It was first implemented on the
Digital Equipment Corporation PDP-11 computer in 1972.

This new programming language was named “C” as it succeeded
an earlier programming language named “B” that had been
introduced around 1970.

The Unix operating system and virtually all Unix applications
are written in the C language. However, C is not limited to a
particular platform and programs can be created on any machine
that supports C, including those running the Windows platform.

The flexibility and portability of C made it very popular and
the language was formalized in 1989 by the American National
Standards Institute (ANSI). The ANSI standard unambiguously
defined each aspect of C, thereby eliminating previous uncertainty
about the precise syntax of the language.

ANSI C has become the recognized standard for the C language
and is described, and demonstrated by examples, in this book.

Why learn C programming?
The C language has been around for quite some time and has
seen the introduction of newer programming languages like Java,
C++, and C#. Many of these new languages are derived, at least in
part, from C – but are much larger in size. The more compact C
is better to start out in programming because it’s simpler to learn.

It is easier to move on to learn the newer languages once the
principles of C programming have been grasped. For instance,
C++ is an extension of C and can be difficult to learn unless you
have mastered C programming first.

Despite the extra features available in newer languages, C remains
popular because it is versatile and efficient. It is used today on a
large number of platforms, for everything from micro-controllers
to the most advanced scientific systems. Programmers around the
world embrace C because it allows them maximum control and
efficiency in their programs.

9

A function is a piece of
code that can be re-
used repeatedly in a C
program. A description
of each function in
the C library is given in
the Reference section
starting on page 161.

Library: Description:

stdio.h

Contains input and output functions, types,
and macro definitions. This library is used by
most C programs and represents almost one
third of the entire C libraries

ctype.h Contains functions for testing characters

string.h Contains functions for manipulating strings

math.h Contains mathematical functions

stdlib.h
Contains utility functions for number
conversion, storage allocation, etc.

assert.h
Contains a function that can be used to add
diagnostics to a program

stdarg.h
Contains a function that can be used to step
through a list of function arguments

setjmp.h
Contains a function that can be used to avoid
the normal call and return sequence

signal.h
Contains functions for handling exceptional
conditions that may arise in a program

time.h
Contains functions for manipulating date and
time components

limits.h
Contains constant definitions for the size of C
data types

float.h
Contains constant definitions relating to
floating-point arithmetic

…cont’d

Standard C libraries
ANSI C defines a number of standard libraries that contain tried-
and-tested functions, which can be used in your own C programs.

The libraries are contained in “header files” that each has a file
extension of “.h”. The names of the standard C library header files
are listed in the table below with a description of their purpose:

10
G

et
ti

ng
 S

ta
rt

ed

When a C compiler is
installed the standard C
library header files (listed
on the previous page)
will also be installed.

Installing a C compiler
C programs are initially created as plain text files, saved with a “.c”
file extension. These can be written in any plain text editor such as
Windows’ Notepad application – no special software is needed.

In order to execute a C program it must first be “compiled” into
byte code that can be understood by the computer. A C compiler
reads the original text version of the program and translates it into
a second file, which is in machine-readable executable byte format.

If the text program contains any syntax errors these will be
reported by the compiler, and the executable file will not be built.

One of the most popular C compilers is the GNU C Compiler
(GCC) that is available free under the terms of the General
Public License (GPL). It is included with almost all distributions
of the Linux operating system. The GNU C Compiler is used to
compile all the examples in this book into executable byte code.

To discover if you already have the GNU C Compiler on your
system, type gcc -v at a command prompt. If it is available the
compiler will respond with version information:

If you are using the Linux operating system and the GNU C
Compiler is not available, install it from the distribution disk or
online repository, or ask your system administrator to install it.

If you are using the Windows operating system and the GNU C
Compiler is not already available, you can download and install
the Minimalist GNU for Windows (MinGW) package, which
includes the GNU C Compiler, by following the steps opposite.

“GNU” is a recursive
acronym for “Gnu’s
Not Unix” and it is
pronounced “guh-new”.
You can find more
details at www.gnu.org

11

The MinGW installation
process may be subject
to change, but current
guidance can be found
at mingw.org/wiki/
Getting_Started

...cont’d

l1	 With an internet connection open, launch a web browser
then navigate to sourceforge.net/projects/mingw and click
the “Download” button to get the MinGW setup installer

l2	 Launch the setup installer and accept the suggested
location of C:\MinGW in the “Installation Manager” dialog

l3	 Choose the “Basic” and “C++ Compiler” items then click
Installation, Apply Changes to complete the installation

The MinGW C++ Compiler is a binary executable file located at
C:\MinGW\bin. To allow it to be accessible from any system
location this folder should now be added to the System Path:

l4	 In Windows’ Control Panel, click the System icon then
select the Advanced System Settings item to launch the
“System Properties” dialog

l5	 In the System Properties dialog, click the Environment
Variables button, select the Path system variable, then
click the Edit button and add the location C:\MinGW\bin;

l6	 Click OK to close each dialog, then open a “Command
Prompt” window and enter the command gcc -v to see the
compiler respond with version information

Location addresses in the
Path statement must end
with a ; semi-colon.

Because C++ is an
extension of C any C++
development tool can
also be used to compile
C programs.

12
G

et
ti

ng
 S

ta
rt

ed

Do not use word
processor applications
to create program code
as they store additional
formatting information
that prevents code
compilation.

Preprocessor instructions
begin with a # hash
character and must
enclose standard library
names within < >
angled brackets.

Writing a C program
In C programs the code statements to be executed are contained
within “functions”, which are defined using this syntax format:

data-type function-name () { statements-to-be-executed }

After a function has been called upon to execute the statements it
contains, it can return a value to the caller. This value must be of
the data type specified before the function name.

A program can contain one or many functions but must always
have a function named “main”. The main() function is the starting
point of all C programs, and the C compiler will not compile the
code unless it finds a main() function within the program.

Other functions in a program may be given any name you like
using letters, digits, and the underscore character, but the name
may not begin with a digit. Also, the C keywords, listed in the
table on the front inner cover of this book, must be avoided.

The () parentheses that follow the function name may, optionally,
contain values to be used by that function. These take the form of
a comma-separated list and are known as function “arguments” or
“parameters”.

The { } curly brackets (braces) contain the statements to be
executed whenever that function is called. Each statement must
be terminated by a semi-colon, in the same way that English
language sentences must be terminated by a period/full stop.

Traditionally, the first program to attempt when learning any
programming language is that which simply generates the
message “Hello World”.

l1	 Open a plain text editor, such as Notepad, then type this
line of code at the start of the page, exactly as it is listed
#include <stdio.h>

The program begins with an instruction to the C compiler to
include information from the standard input/output stdio.h
library file. This makes the functions contained within that
library available for use within this program. The instruction is
more properly called a “preprocessor instruction” or “preprocessor
directive” and must always appear at the start of the page, before
the actual program code is processed.

hello.c

13

Whitespace between the
code is ignored by the
C compiler but program
code should always end
with a newline character.

…cont’d

l2	 Two lines below the preprocessor instruction, add an
empty main function
int main()
{

}

This function declaration specifies that an integer value, of the int
data type, should be returned by the function upon completion.

l3	 Between the braces, insert a line of code that calls upon
one of the functions defined in the standard input/output
library – made available by the preprocessor instruction
printf (“Hello World!\n”) ;

Here the printf() function specifies a single string argument
between its parentheses. In C programming, strings must always
be enclosed within double quotes. This string contains the text
Hello World and the \n “newline” escape sequence that moves the
print head to the left margin of the next line.

l4	 Between the braces, insert a final line of code to return a
zero integer value, as required by the function declaration
return 0 ;

Traditionally, returning a value of zero after the execution of
a program indicates to the operating system that the program
executed correctly.

l5	 Check that the program code looks exactly like the listing
below, then add a final newline character (hit Return after
the closing brace) and save the program as “hello.c”

#include <stdio.h>

int main()
{
 printf(“Hello World!\n”) ;
 return 0 ;
}

The complete program in text format is now ready to be compiled
into machine-readable byte format as an executable file.

Each statement must be
terminated by a
semi-colon character.

14
G

et
ti

ng
 S

ta
rt

ed

Compiling a C program
The C source code files for the examples in this book are stored in
a directory created expressly for that purpose. The directory
is named “MyPrograms” and its absolute address on Windows is
C:\MyPrograms, whereas on Linux it’s at /home/user/MyPrograms.
The hello.c source code file, created by following the steps on
pages 12-13, is saved in this directory awaiting compilation to
produce a version in executable byte code format.

l1	 At a command prompt, issue a cd command with the
path to the MyPrograms directory to navigate there

l2	 At a command prompt in the MyPrograms directory, type
gcc hello.c then hit Return to compile the program

When the compilation succeeds, the compiler creates an
executable file alongside the original source code file. By default,
this file will be named a.out on Linux systems and a.exe on
Windows systems. Compiling a different C source code file in the
MyPrograms directory would now overwrite the first executable
file without warning. This is obviously unsatisfactory so a custom
name for the executable file must be specified when compiling
hello.c. This can be achieved by including a -o option followed by
a custom name in the compiler command.

l3	 At a command prompt in the MyPrograms directory, type
gcc hello.c -o hello.exe then hit Return to compile the
program once more

On both Linux and Windows systems an executable file named
hello.exe is now created alongside the C source code file:

At a command prompt,
type gcc --help then hit
Return to see a list of all
compiler options.

15

If the compiler complains
that there is no new line
at the end of the file add
a carriage return to the
end of the source code,
then save and retry.

…cont’d

Windows users can even
omit the file extension
to run programs. In this
case, typing just hello is
sufficient.

l4	 At a command prompt in Windows, type the executable
filename then hit Return to run the program – the text
string is output and the print head moves to the next line

Because Linux does not by default look in the current directory
for executable files, unless it is specifically directed to do so, it is
necessary to prefix the filename with ./ to execute the program.

l5	 At a command prompt in Linux, type ./hello.exe then hit
Return to run the program – the text string is output and
the print head moves to the next line

You have now created, compiled, and executed the simple Hello
World program that is the starting point in C programming.
All other examples in this book will be created, compiled, and
executed in the same way.

16
G

et
ti

ng
 S

ta
rt

ed

Understanding compilation
In producing an executable file from an original C source code
file, the compilation process actually undergoes four separate
stages, which each generate a new file:

•	 Preprocessing – The preprocessor substitutes all preprocessor
directives in the original source code .c file with actual library
code that implements those directives. For instance, library
code is substituted for #include directives. The generated file
containing the substitutions is in text format and typically has
a .i file extension.

•	 Translating – The compiler translates the high-level
instructions in the .i file into low-level Assembly language
instructions. The generated file containing the translation is in
text format and typically has a .s file extension.

•	 Assembling – The assembler converts the Assembly language
text instructions in the .s file into machine code. The generated
object file containing the conversion is in binary format and
typically has a .o file extension.

•	 Linking – The linker combines one or more binary object .o
files into a single executable file. The generated file is in binary
format and typically has a .exe file extension.

Strictly speaking, “compilation” describes the first three stages
above, which operate on a single source code text file and
ultimately generate a single binary object file. Where the program
source code contains syntax errors, such as a missing semi-colon
statement terminator or a missing parenthesis, they will be
reported by the compiler and compilation will fail.

The linker, on the other hand, can operate on multiple object files
and ultimately generates a single executable file. This allows the
creation of large programs from modular object files that may
each contain reusable functions. Where the linker finds a function
of the same name defined in multiple object files it will report an
error and the executable file will not be created.

Source Code (.c)

Preprocessor

Assembly Code (.s)

Object Code (.o)

Compiler

Assembler

Linker

Executable (.exe)

Substitutions (.i)

17
…cont’d

Normally, the temporary files created during the intermediary
stages of the compilation process are automatically deleted, but
they can be retained for inspection by including a -save-temps
option in the compiler command:

l1	 At a command prompt in the MyPrograms directory, type
gcc hello.c -save-temps -o hello.exe then hit Return to
recompile the program and save the temporary files

l2	 Open the hello.i file in a plain text editor such as
Windows’ Notepad, to see your source code at the very
end of the file preceded by substituted stdio.h library code

l3	 Now, open the hello.s file in a plain text editor to see the
translation into low-level Assembly code and note how
unfriendly that appears in contrast to the C code version

Programs tediously
written in Assembly
language can run faster
than those written in C
but are more difficult to
develop and maintain.
For traditional computer
programming, C is
almost always the first
choice.

18
G

et
ti

ng
 S

ta
rt

ed

•	 The American National Standards Institute (ANSI) established
the recognized standard for the C programming language.

•	 Other programming languages, such as C++ and C#, are
derived in part from the C language.

•	 The C language has a number of standard libraries containing
tried-and-tested functions that can be used in any program.

•	 C libraries are contained in header files whose names have a .h
file extension.

•	 C programs are created as plain text files whose names have a
.c file extension.

•	 The popular GNU C Compiler (GCC) is included in the
Minimalist GNU for Windows (MinGW) package.

•	 Adding the compiler’s host directory to the system path
conveniently allows the compiler to be run from any directory.

•	 Programs have one or more functions containing statements to
be executed whenever the function is called.

•	 Every C program must have a main() function.

•	 A function declaration begins by specifying the data type of
the value to be returned after the function has been executed.

•	 The statements to be executed are contained within { } braces
and each statement must end with a ; semi-colon terminator.

•	 Preprocessor instructions are implemented in the first stage of
program compilation and will typically substitute library code.

•	 The GNU C Compiler is run with the gcc command and may
include a -o option to name the executable output file.

•	 Temporary files created during the compilation process can be
retained using the -save-temps compiler command option.

Summary

	TOC_web
	01_web

