
Contents

Getting started 7

Introducing Visual Basic 8
Installing Visual Studio 10
Exploring the IDE 12
Starting a new project 14
Adding a visual control 16
Adding functional code 18
Saving projects 20
Reopening projects 21
Summary 22

Setting properties 23

Form properties 24
Meeting the properties editor 25
Editing property values 26
Coding property values 28
Applying computed values 30
Applying user values 32
Prompting for input 34
Specifying dialog properties 36
Summary 38

Using controls 39

Tab order 40
Using Button 41
Using TextBox 42
Using ComboBox 43
Using Label 44
Using PictureBox 45
Using ListBox 46
Using CheckBox 48
Using RadioButton 49
Using WebBrowser 50
Using Timer 52
Summary 54

1

3

2



Learning the language 55

Elements of a program 56
Declaring variable types 58
Understanding variable scope 60
Working with variable arrays 62
Performing operations 64
Branching code 66
Looping code 68
Calling object methods 70
Creating a sub method 72
Sending parameters 73
Creating a function 74
Doing mathematics 75
Generating a random number 76
Summary 78

Building an application 79

The program plan 80
Assigning static properties 82
Designing the interface 84
Initializing dynamic properties 86
Adding runtime functionality 88
Testing the program 90
Deploying the application 92
Summary 94

Solving problems 95

Real-time error detection 96
Fixing compile errors 98
Debugging code 100
Setting debug breakpoints 102
Detecting runtime errors 104
Catching runtime errors 106
Getting help 108
Summary 110

Extending the interface 111

Color, Font & Image dialogs 112
Open, Save & Print dialogs 114
Creating application menus 116
Making menus work 118
Adding more forms 120
Controlling multiple forms 122

4

5

6

7



Learning the language 55

Elements of a program 56
Declaring variable types 58
Understanding variable scope 60
Working with variable arrays 62
Performing operations 64
Branching code 66
Looping code 68
Calling object methods 70
Creating a sub method 72
Sending parameters 73
Creating a function 74
Doing mathematics 75
Generating a random number 76
Summary 78

Building an application 79

The program plan 80
Assigning static properties 82
Designing the interface 84
Initializing dynamic properties 86
Adding runtime functionality 88
Testing the program 90
Deploying the application 92
Summary 94

Solving problems 95

Real-time error detection 96
Fixing compile errors 98
Debugging code 100
Setting debug breakpoints 102
Detecting runtime errors 104
Catching runtime errors 106
Getting help 108
Summary 110

Extending the interface 111

Color, Font & Image dialogs 112
Open, Save & Print dialogs 114
Creating application menus 116
Making menus work 118
Adding more forms 120
Controlling multiple forms 122

Playing sounds 124
Playing multimedia 126
Summary 128

Scripting with Visual Basic 129

Introducing VBA macros 130
Creating a Word macro 132
Creating an Excel macro 134
Running advanced macros 136
An introduction to VBScript 138
Enforcing declarations 139
Validating input 140
Merging text files 142
Getting registry data 144
Summary 146

Harnessing data 147

Reading text files 148
Streaming lines of text 150
Reading Excel spreadsheets 152
Reading XML files 154
Creating an XML dataset 156
Reading RSS feeds 158
Addressing XML attributes 160
Summary 162

Employing databases 163

An introduction to databases 164
Designing a database 166
Creating a database 168
Adding database tables 170
Defining table columns 172
Making table relationships 174
Entering table data 176
Creating a database dataset 178
Adding form data controls 180
Binding meaningful data 182
Building custom SQL queries 184
Summary 186

Index 187

8

9

10



Visual Basic Project VBA Word Macro VBScript FileVBA Excel Macro

Preface
The creation of this book has provided me, Mike McGrath, a welcome opportunity to update 
my previous books on Visual Basic programming with the latest techniques. The examples 
are created in the latest Visual Studio Community edition development suite, and the book’s 
screenshots illustrate the actual results produced by compiling and executing the listed code.

Conventions in this book

In order to clarify the code listed in the steps given in each example, I have adopted certain 
colorization conventions that simulate the default syntax highlighting of the Visual Studio code 
editor. Visual Basic keywords are colored blue; Visual Basic objects are light blue; string values 
are red; comments are green; and all other code is black – like this:

‘ Create an XMLDocument object from a specified XML file. 
Dim doc As New System.Xml.XmlDocument 
doc.Load( “C:\Users\Mike\Documents\Books.xml” )

Additionally, in order to identify each source code item described in the steps, a colored icon 
and name appears in the margin alongside the steps:

I sincerely hope you enjoy discovering the powerful, expressive possibilities of Visual Basic 
programming and have as much fun with it as I did in writing this book.

Grabbing the source code

For convenience I have placed source code files from the examples featured in this book into a 
single ZIP archive. You can obtain the complete archive by following these easy steps:

l1 Browse to www.ineasysteps.com then navigate to Free Resources and choose the 
Downloads section

l2 Find Visual Basic in easy steps, 6th Edition in the list, then click on the hyperlink 
entitled All Code Examples to download the archive

l3 Now, extract the archive contents to any convenient location on your computer



Welcome to the exciting 

world of Visual Basic 

programming. This chapter 

introduces the Visual Studio 

Integrated Development 

Environment (IDE) and 

shows you how to create a 

real Windows application.

Introducing Visual Basic

Installing Visual Studio

Exploring the IDE

Starting a new project

Adding a visual control

Adding functional code

Saving projects

Reopening projects

Summary

8

10

12

14

16

18

20

21

22

Getting started1



8
G

et
ti

ng
 s

ta
rt

ed

In choosing to start programming with Visual Basic you have 
made an excellent choice – the Visual Basic programming 
language offers the easiest way to write programs for Windows. 
This means you can easily create your own programs to give 
maximum control over your computer and automate your work to 
be more productive. Also, programming with Visual Basic is fun!

Like other programming languages, Visual Basic comprises 
a number of significant “keywords” and a set of syntax rules. 
Beginners often find its syntax simpler than other programming 
languages, making Visual Basic a popular first choice to learn.

Although writing programs can be complex, Visual Basic makes 
it easy to get started. You can choose how far to go. Another 
advantage of Visual Basic is that it works with Microsoft Office 
applications and with the Windows Script Host within the 
Windows operating system – so the possibilities are immense...

• Visual Basic (VB) – quite simply the best programming 
language for the novice or hobbyist to begin creating their own 
standalone Windows applications, fast.

• Visual Basic for Applications (VBA) – an implementation of 
Visual Basic that is built into Microsoft Office applications. It 
runs within a host rather than as a standalone application.

• Visual Basic Script (VBScript) – a derivative of Visual Basic 
that can be used for Windows scripting.

Introducing Visual Basic



9
…cont’d

The evolution of Visual Basic

• Visual Basic 1.0 released in May 1991 at the Comdex trade 
show in Atlanta, Georgia, USA.

• Visual Basic 2.0 released in November 1992 – introducing an 
easier and faster programming environment.

• Visual Basic 3.0 released in the summer of 1993 – introducing 
the Microsoft Jet Database Engine for database programs.

• Visual Basic 4.0 released in August 1995 – introducing support 
for controls based on the Component Object Model (COM).

• Visual Basic 5.0 released in February 1997 – introducing the 
ability to create custom user controls.

• Visual Basic 6.0 released in the summer of 1998 – introducing 
the ability to create web-based programs. This hugely popular 
edition is the final version based on COM and is often referred 
to today as “Classic Visual Basic”.

• Visual Basic 7.0 (also known as Visual Basic .NET) released 
in 2002 – introducing a very different object-oriented language 
based upon the Microsoft .NET framework. This controversial  
edition broke backward-compatibility with previous versions, 
causing a rift in the developer community.

• Visual Basic 8.0 (a.k.a.Visual Basic 2005).

• Visual Basic 9.0 (a.k.a. Visual Basic 2008).

• Visual Basic 10.0 (a.k.a. Visual Basic 2010).

• Visual Basic 11.0 (a.k.a. Visual Basic 2012).

• Visual Basic 12.0 (a.k.a. Visual Basic 2013). 
(Version numbering of Visual Basic skipped 13 to keep in line 
with the version numbering of Visual Studio itself.)

• Visual Basic 14.0 (a.k.a. Visual Basic 2015).

• Visual Basic 15.0 (a.k.a. Visual Basic 2017).

• Visual Basic 16.0 (a.k.a. Visual Basic 2019). 

All examples in this book are created for Visual Basic 16.0 
although many of the core language features are common to 
previous versions of the Visual Basic programming language.

Visual Basic derives 
from an earlier simple 
language called BASIC, 
an acronym –  
Beginners 
All-purpose 
Symbolic 
Instruction 
Code. 
The “Visual” part was 
added later as many 
tasks can now be 
accomplished visually, 
without actually writing 
any code.



10
G

et
ti

ng
 s

ta
rt

ed

Installing Visual Studio
In order to create Windows applications with the Visual Basic 
programming language you will first need to install a Visual 
Studio Integrated Development Environment (IDE).

Microsoft Visual Studio is the professional development tool that 
provides a fully Integrated Development Environment for Visual 
Basic, Visual C++, and Visual C#. Within its IDE, code can be 
written in C++, C#, or the Visual Basic programming language to 
create Windows applications.

Visual Studio Community edition is a streamlined version 
of Visual Studio specially created for those people learning 
programming. It has a simplified user interface and omits 
advanced features of the professional edition to avoid confusion. 
Within its IDE, code can be written in the Visual Basic 
programming language to create Windows applications.

Both Visual Studio and Visual Studio Community provide a 
Visual Basic IDE for Visual Basic programming. Unlike the fully-
featured Visual Studio product, the Visual Studio Community 
edition is completely free and can be installed on any system 
meeting the following minimum requirements:

Component Requirement

Operating system

Windows 10 (version 1703 or higher) 
Windows Server 2019 
Windows 8.1 (with update 2919355) 
Windows 7 Service Pack 1 
Windows Server 2012 R2

CPU (processor) 1.8 GHz or faster

RAM (memory) 2 GB (8 GB recommended)

HDD (hard drive) Up to 210 GB available space

Video Card
Minimum resolution of 1280 x 720  
Optimum resolution of 1366 x 768

The Visual Studio Community edition is used throughout this 
book to demonstrate programming with the Visual Basic language, 
but the examples can also be recreated in Visual Studio. Follow the 
steps opposite to install Visual Studio Community edition.

Visual Studio is used 
to develop computer 
programs, web apps, 
mobile apps, and more.



11
…cont’d

Choosing a different 
destination folder may 
require other paths to 
be adjusted later – it’s 
simpler to just accept the 
suggested default.

Installation of Visual 
Studio is handled by an 
installer application. You 
can re-run the installer 
at a later date to add or 
remove features.

l1 Open your web browser and navigate to the Visual Studio 
Community download page – at the time of writing this 
can be found at visualstudio.microsoft.com/vs/community

l4 Open your 
Downloads 
folder, then 
click on the 
installer file 
icon to fetch 
some setup 
files

l6 Click the Install button to begin the download and 
installation process

l2 Click a button to select 
your operating system 
– Windows or macOS

l3 Now, click on the 
Download button 
to grab the installer

l5 Choose the two VB options as the type of installation



12
G

et
ti

ng
 s

ta
rt

ed

Exploring the IDE
l1 Go to your Apps menu, then select the Visual Studio 

2019 menu item added there by the installer:

l4 For now, just click the link to Continue without code to 
launch the Visual Studio application 

The Visual Studio Integrated Development Environment (IDE) 
appears, from which you have instant access to everything needed 
to produce complete Windows applications – from here you can 
create exciting visual interfaces, enter code, compile and execute 
applications, debug errors, and much more.

l2 Sign in with your Microsoft account, or register an 
account then sign in, to continue

l3 See a default Start Page appear where recent projects will 
be listed alongside several “Get started” options

The first time Visual 
Studio starts it takes 
a few minutes as it 
performs configuration 
routines.

In the future your recent 
projects will be listed 
here so you can easily 
reopen them.



13
...cont’d

• Menu Bar – where you can select actions to perform on all 
your project files and to access Help. When a project is open, 
extra menus of Project, and Build, are shown in addition to 
the default menu selection of File, Edit, View, Debug, Test, 
Analyze, Tools, Extensions, Window, and Help.

• Toolbar – where you can perform the most popular menu 
actions with just a single click on its associated shortcut icon.

• Toolbox – where you can select visual elements to add to a 
project. Click the Toolbox side bar button to see its contents. 
When a project is open, “controls” such as Button, Label,  
CheckBox, RadioButton, and TextBox are shown here.

• Solution Explorer – where you can see at a glance all the files 
and resource components contained within an open project.

• Status Bar – where you can read the state of the current 
activity being undertaken. When building an application a 
“Build started” message is displayed here, changing to a  
“Build succeeded” or “Build failed” message upon completion.

Visual Studio IDE components
The Visual Studio IDE initially provides these standard features:

Menu Bar

Toolbar

ToolboxStatus Bar

Solution Explorer

To change the color, 
choose the Tools, 
Options menu then 
select Environment, 
General, Color Theme.

Notifications



14
G

et
ti

ng
 s

ta
rt

ed

Starting a new project
l1 On the Menu Bar, click File, New, Project to open the 

“Create a new project” dialog

l3 Now, select the Windows Forms App option

l4 Click the Next button to open the “Configure your new 
project” dialog

Leave the Create 
directory for solution 
option checked to create 
a folder named as the 
project name, and 
located by default in a 
C:\Users\username\
source\repos directory.

l2 Next, you must choose “Language”, “Platform”, and 
“Project type” – select Visual Basic, Windows, Desktop

GettingStarted



15
...cont’d

l5 Enter a name of your choice in the Project name field – 
in this case, the project name will be “GettingStarted”

l6 Click on the Create button to create the new project

Visual Studio now creates your new project and loads it into the 
IDE. A tabbed Designer window appears displaying a default 
empty Form. You can select the View, Solution Explorer menu 
to open a Solution Explorer window that reveals all files in your 
project, and you can select the View, Properties Window menu 
to open a Properties window listing all properties of your Form.

Solution Explorer

Properties window

Designer

Alternatively, you can 
run applications using 
the Debug, Start 
Debugging menu 
options.

The Designer is where you create visual interfaces for your 
applications, and the Properties window contains details of the 
item that is currently selected in the Designer window.

The Visual Studio IDE has now gathered all the resources needed 
to build a default Windows application – click the Start button 
on the Toolbar to launch this application. The application simply 
creates a basic window – you can move it, minimize it, maximize 

it, resize it, and quit the 
application by closing it. It 
may not do much, but you 
have already created a real 
Windows program!



16
G

et
ti

ng
 s

ta
rt

ed

Adding a visual control
The Toolbox in the Visual Studio IDE contains a wide range of 
visual controls that are the building blocks of your applications. 
Using the project created on page 15, follow these steps to start 
using the Toolbox now:

l1 Click View, Designer 
to see the Designer 
window

l2 Next, click View, 
Toolbox on the Menu 
Bar, or click the Toolbox 
side bar button, to 
display the Toolbox 
categories

l3 Now, click on the 
expansion arrow 
beside the Common 
Controls category 
heading to expand the 
list of visual controls. 
Usefully, each control 
name appears beside 
an icon depicting that 
control as a reminder. 
You can click on the 
Common Controls 
category heading again 
to collapse the list, then 
expand other categories 
to explore the range 
of controls available to 
build your application 
interfaces

Any pinned Window in 
the IDE can be dragged 
from its usual location to 
any position you prefer. 
Drag it back to the initial 
location to re-dock it.

The Toolbox will 
automatically hide when 
you click on another part 
of the IDE, but it can be 
fixed in place so it will 
never hide, using the 

 pin button on the 
Toolbox bar.

If no controls are visible 
in the Toolbox, right-
click on the Toolbox then 
choose Show All to 
reveal the categories.



17
…cont’d

l4 Click and drag the Button item from the Common 
Controls categories in the Toolbox onto the Form in the 
Designer window, or double-click the Button item, to add 
a Button control to the Form

The Button control appears in the Designer window surrounded 
by “handles” that can be dragged to resize the button’s width and 
height. Click the  Start button to run the application and try 
out your button.

The Button control behaves in a familiar Windows application 
manner, with “states” that visually react to the cursor:

Default State Hover State Down State

This Button control 
performs no function 
when it’s clicked – until 
you add some code.

A Button is one of the 
most useful interface 
controls – your program 
determines what 
happens when the user 
clicks it.



18
G

et
ti

ng
 s

ta
rt

ed

Adding functional code
The Visual Studio IDE automatically generates code, in the 
background, to incorporate the visual controls you add to your 
program interface. Additional code can be added manually, using 
the IDE’s integral Code editor window, to determine how your 
program should respond to interface events – such as when the 
user clicks a button.

Using the project created on page 17, follow these steps to start 
using the Visual Studio Code editor now:

l1 Double-click on the 
Button control you have 
added to the default 
Form in the Designer 
window. A new tabbed 
text window opens in 
the IDE – this is the 
Code editor window

l2 The cursor is automatically placed at precisely the right 
point in the code at which to add an instruction to 
determine what the program should do when this button 
is clicked. Type this instruction into the Code editor 
MsgBox(“Hello World!”) 

This Solution Explorer 
and Properties 
windows are closed 
here for clarity. You can 
reopen them at any time 
from the View menu.

Switch easily between 
the Code window and 
Designer window 
by clicking on the 
appropriate window tab.



19
…cont’d

l3 Click the Start button to run the application and test the 
code you have just written to handle the event that occurs 
when the button is clicked

l4 Push the OK button to close the dialog box, then click 
the X button on the Form window, or click the Stop 
Debugging button on the Menu Bar, to stop the program

Each time the button in this application is pressed, the program 
reads the line of code you added manually to produce a dialog 
box containing the specified message. The action of pressing the 
button creates a Click event that refers to the associated 
“event-handler” section of code you added to see how to respond.

In fact, most Windows software works by responding to events in 
this way. For instance, when you press a key in a word processor 
a character appears in the document – the KeyPress event calls 
upon its event-handler code to update the text in response.

The process of providing intelligent responses to events in 
your programs is the very cornerstone of creating Windows 
applications with Visual Basic.

Use the View menu on 
the Menu Bar to open 
the Code editor, Form 
Designer, or any other 
window you require at 
any time.



20
G

et
ti

ng
 s

ta
rt

ed

Saving projects
Even the simplest Visual Basic project comprises multiple files 
that must each be saved on your system to store the project.

Follow these steps to save the current project to disk:

l1 Click the Save All 
button on the Toolbar, 
or click File, Save All 
on the Menu Bar, or 
press Ctrl + Shift + S

l2 Your project is now saved at its default save location

l3 To discover or change the save location, click Tools on 
the Menu Bar, then select the Options item – to open 
the Options dialog

l4 Expand Projects and Solutions in the left-hand pane, 
then choose the Locations option to reveal Projects 
location

You can click File, Close 
Solution on the Menu 
Bar to close an open 
project – a dialog will 
prompt you to save any 
changes before closing.

Find the Debug folder 
in your saved project 
directory containing the 
application’s executable 
(.exe) file – you can 
double-click this to run 
your program like other 
Windows applications.



21

Reopening projects
Use these steps to reopen a saved Visual Basic project:

l1 Click File, Open, Project/Solution... on the Menu Bar 
to launch the Open Project/Solution dialog

l2 In the Open Project/Solution dialog, select the folder 
containing the project you wish to reopen, and Open it

l3 Select the Visual Basic Solution file with the extension 
.sln to reopen the project, or open the folder bearing the 
project name then select the Visual Basic Project File 
with the extension .vbproj to reopen the project

If you don’t see the 
Designer window after 
you have reopened a 
project, click on the 
MainWindow.xaml  
icon in Solution 
Explorer to make it 
appear.

Only have one project 
open at any given time 
to avoid confusion – 
unless several are needed 
to be open together for 
advanced programming.



22
G

et
ti

ng
 s

ta
rt

ed

• A project template selected in the Create a new project dialog 
is used to begin a new Windows application project.

• A unique name should be entered into the Configure your 
new project dialog when you create a new Visual Basic project.

• The Form Designer window of the Visual Studio IDE is 
where you create the visual interface for your program.

• Visual controls are added from the Toolbox to create the 
interface layout you want for your program.

• A control can be dragged from the Toolbox and dropped onto 
the Form, or added to the Form with a double-click.

• The Visual Studio IDE automatically generates code in the 
background as you develop your program visually.

• The Code editor window of the Visual Studio IDE is where 
you manually add extra code to your program.

• Double-click on any control in the Form Designer to open the 
Code editor window at that control’s event-handler code.

• The Start button on the Visual Studio Toolbar can be used to 
run the current project application.

• Pressing a button control in a running application creates a 
Click event within the program.

• Code added to a button’s Click event-handler determines how 
your program will respond whenever its Click event occurs.

• Providing intelligent responses to events in your programs is 
the cornerstone of programming with Visual Basic.

• Remember to explicitly save your working project using the 
Save All button on the Toolbar to avoid accidental loss.

• Select the solution file with the .sln extension in your chosen 
saved project directory to reopen that project.

Summary


	TOC_web
	01_web

