Values and Formulas

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Contents</td>
<td>8</td>
</tr>
<tr>
<td>Values</td>
<td>10</td>
</tr>
<tr>
<td>Formulas</td>
<td>11</td>
</tr>
<tr>
<td>Operators</td>
<td>12</td>
</tr>
<tr>
<td>Order of Calculation</td>
<td>13</td>
</tr>
<tr>
<td>Creating Formulas</td>
<td>14</td>
</tr>
<tr>
<td>Named References</td>
<td>16</td>
</tr>
<tr>
<td>Named Constants</td>
<td>17</td>
</tr>
<tr>
<td>Formula Assistance</td>
<td>18</td>
</tr>
<tr>
<td>Adding Comments</td>
<td>19</td>
</tr>
<tr>
<td>Error Values</td>
<td>20</td>
</tr>
</tbody>
</table>

Managing Formulas

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Formulas Tab</td>
<td>22</td>
</tr>
<tr>
<td>Formula Auditing</td>
<td>23</td>
</tr>
<tr>
<td>Trace Precedents</td>
<td>24</td>
</tr>
<tr>
<td>Trace Dependents</td>
<td>25</td>
</tr>
<tr>
<td>Show Formulas</td>
<td>27</td>
</tr>
<tr>
<td>Error Checking</td>
<td>28</td>
</tr>
<tr>
<td>Evaluate Formula</td>
<td>30</td>
</tr>
<tr>
<td>Watch Window</td>
<td>31</td>
</tr>
<tr>
<td>Calculation Options</td>
<td>33</td>
</tr>
<tr>
<td>External References</td>
<td>34</td>
</tr>
<tr>
<td>Array Formulas</td>
<td>36</td>
</tr>
<tr>
<td>Dynamic Arrays</td>
<td>38</td>
</tr>
</tbody>
</table>

Functions

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excel Functions</td>
<td>40</td>
</tr>
<tr>
<td>Function Structure</td>
<td>41</td>
</tr>
<tr>
<td>Typing the Function</td>
<td>42</td>
</tr>
<tr>
<td>AutoComplete</td>
<td>44</td>
</tr>
<tr>
<td>Function Library</td>
<td>45</td>
</tr>
<tr>
<td>Insert Function</td>
<td>47</td>
</tr>
<tr>
<td>Function Categories</td>
<td>49</td>
</tr>
<tr>
<td>AutoSum</td>
<td>50</td>
</tr>
<tr>
<td>Recently Used</td>
<td>52</td>
</tr>
<tr>
<td>All Functions List</td>
<td>53</td>
</tr>
<tr>
<td>Developer Tab</td>
<td>54</td>
</tr>
<tr>
<td>Add-ins</td>
<td>55</td>
</tr>
</tbody>
</table>
Math & Trig and Logical

- Math & Trig Category
- Sum Functions
- Random Numbers
- Rounding Functions
- Trig Functions
- Logical Category
- IF Function
- IFS Function
- SWITCH Function

Math & Trig Category

- Sum Functions
- Random Numbers
- Rounding Functions
- Trig Functions

Logical Category

- IF Function
- IFS Function
- SWITCH Function

Date & Time and Text

- Date & Time Category
- Date Formats
- Time Formats
- Leap Year Inconsistency
- DATEDIF Function
- Workday Functions
- Text Category
- CONCAT Function
- TEXTJOIN Function
- Case Functions
- Sentence Case
- SUBSTITUTE Function
- BAHTTEXT Function

Date & Time Category

- Date Formats
- Time Formats
- Leap Year Inconsistency
- DATEDIF Function
- Workday Functions

Text Category

- CONCAT Function
- TEXTJOIN Function
- Case Functions
- Sentence Case
- SUBSTITUTE Function
- BAHTTEXT Function

Financial and Statistical

- Financial Category
- Payments
- Future Value
- Depreciation
- Statistical Category
- Averages
- Standard Deviation
- Forecasts
- Counting

Financial Category

- Payments
- Future Value
- Depreciation
- Statistical Category
- Averages
- Standard Deviation
- Forecasts
- Counting
10 User Defined Add-ins and Macros

- User Defined Category 150
- Analysis ToolPak Add-in 151
- Euro Currency Tools Add-in 152
- Solver Add-in 154
- COM Add-ins 155
- Inquire Add-in 156
- Power Pivot Add-in 157
- Power Map Add-in 158
- Macros in Excel 159
- Macro Commands 160
- Recording Macros 161
- Using VBA 162
- Macros on the Toolbar 164
- Macros Step by Step 166

11 Support and References

- Backup 168
- AutoRecover 169
- Templates 170
- Online Templates 172
- Internet Resources 174
- Office Community 176
- Wikipedia 178
- Excel Help 179
- Save Workbook Online 180
- Excel Online 182
- Excel in Word 184
- Publish as PDF or XPS 186

Index

- 187
The power that drives the Excel spreadsheet derives from the formulas and functions in the individual cells. We begin our review of these by examining the values and formulas that may be stored in the cells, and see how Excel can assist in handling these.

8	Cell Contents
10	Values
11	Formulas
12	Operators
13	Order of Calculation
14	Creating Formulas
16	Named References
17	Named Constants
18	Formula Assistance
19	Adding Comments
20	Error Values
Cell Contents

However simple or complex the spreadsheet, its cells will contain one of three possibilities:

- **l** Label Some form of text
- **v** Value Number, with formatting
- **b** Blank Empty cell

Review the cells in this example spreadsheet:

The cells are displayed with their associated formatting applied. For example, the numbers in cells A3:B6 are displayed as dates.

To see the actual contents of the cells:

1. Press **Ctrl + `** (the grave accent key) or select the **Formulas** tab and click **Show Formulas**

The actual contents of the cells, as entered, are displayed:

This shows the cell contents as entered. For a date, the entered value is converted to the number of days since January 1st, 1900.
Numbers in the cells are displayed according to the cell format that has been assigned. The same value can appear in many different ways – for example:

The number 100 takes on significantly different appearances, depending on the format applied. However, when the cell contents are referenced, the same underlying value is assigned, irrespective of the format.

1. Press Ctrl + `, or select the Formulas tab and click Show Formulas to show the actual contents

Cells C1 to C7 are assigned the contents of cells B1 to B7 respectively, and in each case the value of 100 is applied, whatever the display format may be.

Whenever a cell is referenced, it is the intrinsic value of the cell that will be made use of.
Values

You can use the TYPE function to check the contents of cells. This can identify five possibilities:

- **1** Number
- **2** Text
- **4** Logical (True or False)
- **16** Error notification
- **64** Array

For example:

Cells such as B4 in the above spreadsheet, or C7 in the first example on page 9, are **formulas**, identified by the initial `=` (equals sign).

Neither the CELL function nor the TYPE function will identify a formula as such, but will merely reflect the actual value that the formula produces.

Here are some example formulas:

Here **CELL** identifies value and label contents, while **TYPE** identifies number, text, logical and error contents. If the results of a formula change, the type identified will change to match.
Formulas

Formulas in Excel can be very simple or very complex, but they all have the same basic features:

- **An initial = sign**
 (Tells Excel that a formula follows.)

- **One or more operands**
 (Values or cell references.)

- **One or more operators**
 (Symbols indicating how operands are treated.)

The Annual Budget spreadsheet includes some typical formulas:

1. Display the cell contents to see the actual formulas

Cells C3 to E3 replicate the adjacent cell. Cells B4 to E4 are percentages of cells B3 to E3. Cells F3 to F5 contain the combined values of the adjacent four cells. Cells B8 to E8 contain the combined values of the five cells above, calculated using the **SUM** function rather than just adding the specific cells.
Operators

Operators used in Excel formulas fall into four groups:

- **Arithmetic**
- **Comparison**
- **Text**
- **Reference**

The operators available, their descriptions and examples of usage:

Each of the **Comparison** operators gives a **Logical** result, which can be either TRUE or FALSE.

The **Reference** operators allow you to select cells from one or two ranges. These cells can then be processed by other operators or functions – for example, to calculate the totals of all the selected cells. **Intersection** selects the cells that are common to two ranges – for example, the overlap. **Union** selects all the cells from both ranges.
Order of Calculation

If there are several operands and operators in a formula, the sequence in which the calculations are performed can be crucial. For example, the formula 4+8^2 could be evaluated from left to right, as 12^2, giving 144. Alternatively, the exponential could be computed first, as 4+64, giving 68.

To avoid any ambiguity, Excel uses a predefined sequence. This operator precedence is as follows:

Operators such as * and / that are at the same level could be evaluated in any order. However, Excel chooses to evaluate them from left to right.

You can use parentheses to control the computation. Expressions within the innermost set of parentheses will be calculated first, then Excel works outwards.

To illustrate the effects of parentheses, the same formula is shown with various combinations of parentheses:

The Negation operation is treated differently in Excel. Arithmetically the formula -4^2 is -16. However, in Excel, Negation is applied before Exponential so the formula becomes (-4)^2, which is 16.
Creating Formulas

You can use a combination of typing and selecting to create formulas using the various operators.

To add a formula to the example Expenses spreadsheet, to calculate the full cost of an item:

1. Double-click cell C3 to select that cell for editing

2. Type = and then click the cell B3 (or simply type B3)

3. Type *(1+ and then select or type B7 (the Taxrate)

Since Taxrate is a singular value, you’ll want to make this an absolute reference, so that you can easily move or copy formulas that use this value.

4. Highlight the cell reference C7 and press F4 once to switch to absolute addressing
...cont’d

5 Type the closing parenthesis and press Enter to complete the formula.

You can copy this formula to calculate the full cost of other items, using the fill handle.

1 Select C3, the cell with the formula, and click the fill handle on the lower right-hand corner.

2 Drag down to replicate the formula in the next two cells, C4 and C5, then release the mouse.

3 Select cell C6 and enter the formula =C3+C4+C5 typing or selecting the required cells, as preferred.

4 Press Enter to complete the formula.

You can also Copy the cell with the formula, then select the target cells and use Paste to replicate the formula.

Since the Taxrate is an absolute reference, it will be replicated unchanged, while the other cell reference will be incremented.
Named References

When you have absolute references in your formulas, you can name them to make their purposes clearer.

To create a name for a particular cell:

1. Select the cell you want to name – B7, for example
2. Click the Name box, on the left of the Formula bar, then type the name – for example, Taxrate, then press Enter
3. Click the Formulas tab and select Name Manager in the Defined Names group to view all the names in the workbook

Names create absolute references to cells or ranges of cells. They can be used in formulas and, when these formulas are copied, the references will not be changed.

Names must start with a letter, an underscore or a backslash. The names can contain letters, numbers, periods and underscores, but no spaces. Case is ignored, and names can be up to 256 characters.

The Name Manager shows Defined Names for cells, ranges of cells, constants (see page 17) and tables.

Using meaningful names to reference data items may make the intent of the formula easier to understand, as in this example showing expenses with sales tax and gratuities added.
Named Constants

You can name a constant value directly, without having to allocate it to a specific cell. For example, if your formulas require a constant Discount rate, you can assign a name and a value as follows:

1. Select Define Name from the Defined Names group on the Formulas tab.

2. The New Name dialog box is displayed.

3. Select the Name box and type the constant name – e.g. Discount.

4. Set the Scope – Workbook or Sheet – and add a description in the Comment box, if desired.

5. Select the Refers to box and replace the cell reference with the required value (e.g. =0.15) and click OK.

You can now use the defined name in your formulas. Note that the full name and description will be displayed as you start typing the defined constant name. Double-click to enter the name.

The constants you name can be text as well as numbers. For example, you could define a constant for your company name or address.

You could type a frequently required calculation as a formula in the Refers to box, and then use the defined name in other formulas, without having to assign a cell to hold that calculation.
Formula Assistance

Excel provides assistance as you enter formulas, to make them easier to construct and to help you check that you have chosen the required values and operations.

1. When you type a defined name, Excel outlines the associated cell or range of cells.

Here we calculate a numeric progression and the total and average of its terms. F, D and N are defined names.

2. With nested calculations, Excel colors matching pairs of parentheses to clarify the operations.

Coloring matching pairs of parentheses makes it easier to check the calculation and spot errors such as superfluous parentheses.

3. If you do make a mistake, such as entering an extra parenthesis as shown above, Excel will detect the error and may offer a correction.
Adding Comments

Add notes to a cell – for example, to explain how a particular formula operates. To add such a comment:

1. Select the cell where the comment is meant to display.

2. Click the **Review** tab and select **New Comment** from the **Comments** group.

3. Your username is shown. Delete this if desired, then add your comments, and format the text if you wish.

4. Select any other cell to save and close the comment.

5. The red flash indicates the presence of a comment, which is displayed when you move the mouse over that cell.

When you have comments in your worksheet, you can print them as displayed, or print all comments at the end of the sheet.
Error Values

If Excel detects a problem for which it is unable to offer a correction, it will place an error value in the cell. Here are some of the error values you may encounter:

1. When a number is too long to fit into a cell, the **Overflow** error is shown. Resolve by widening the cell or choosing a smaller number format.

2. When the formula contains division by a value of zero or by an empty cell, you get a **Divide by Zero** error.

3. A **NAME** error implies reference to a deleted name, or to a name that has not been defined.

4. A **NULL** error results from referencing the intersection or two ranges that do not overlap.

5. You’ll get a **NUM** error with invalid arguments, such as a negative number with the square root function, or a **VALUE** error with an argument of the wrong data type.

6. An invalid reference gives a **REF** error, such as when you copy a formula and get an invalid cell reference.