
Get Started 7

Meet the Go Language 8
Install the Go Tools 10
Create the Go Workspace 12
Write a Go Program 14
Run a Go Program 16
Format and Comment Code 17
Explore the VS Code Editor 18
Summary 20

Store Values 21

Create Program Variables 22
Display Variable Values 24
Convert Data Types 26
Fix Constant Values 28
Point to Stored Values 30
Summary 32

Perform Operations 33

Do Arithmetic 34
Assign Values 36
Make Comparisons 38
Assess Logic 40
Juggle Bits 42
Understand Precedence 44
Summary 46

Control Flow 47

Test a Condition 48
Switch Cases 50
Loop Several Times 52
Loop While True 54
Break Out of Loops 56
Go to Labels 58
Summary 60

1

2

4

3

Contents

Produce Functions 61

Create a Basic Function 62
Add Parameters 64
Pass References 66
Return Values 68
Call Recursively 70
Enclose Anonymously 72
Pass Functions 74
Handle Errors 76
Separate Files 78
Summary 80

Build Structures 81

Group Data 82
Attach Methods 84
Embed Structs 86
Encapsulate Features 88
Compose Elements 90
Satisfy Interfaces 92
Embed Interfaces 94
Summary 96

Create Arrays 97

Create a Basic Array 98
Loop Through Elements 100
Slice Arrays 102
Make Slices 104
Slices Versus Arrays 106
Map Keys and Values 108
Summary 110

Harness Time 111

Get Dates 112
Get Times 114
Format Date and Time 116
Set Date and Time 118
Recognize Zones 120
Delay Time 122
Summary 124

5

6

7

8

Manage Data 125

Unite Strings 126
Split Strings 128
Find Characters 130
Convert Strings 132
Calculate Areas 134
Evaluate Numbers 136
Round Decimals 138
Generate Randoms 140
Summary 142

Handle Input 143

Get User Input 144
Buffer Input 146
Command Flags 148
Read Files 150
Write Files 152
Use Temporary Files 154
Summary 156

Employ Concurrency 157

Create Goroutines 158
Keep Waiting 160
Make Channels 162
Buffer Channels 164
Select Channels 166
Synchronize Goroutines 168
Use Worker Pools 170
Summary 172

Request Responses 173

Listen for Requests 174
Handle a Request 176
Add Files to Serve 178
Deliver a Static Page 180
Log Received Data 181
Deliver a Dynamic Response 184
Summary 186

Index 187

9

10

11

12

Grab the Source Code
For convenience, the source code files from all examples featured in this book are available in a
single ZIP archive. You can obtain this archive by following these easy steps:

l1 Browse to www.ineasysteps.com then navigate to Free Resources and choose the
Downloads section

l2 Next, find GO Programming in easy steps in the list, then click on the hyperlink
entitled All Code Examples to download the ZIP archive file

l3 Now, extract the archive contents to the GOPATH/src sub-directory on your computer

 If you don’t achieve the result illustrated in any example, simply compare your code to that
in the original example files you have downloaded to discover where you went wrong.

The examples in this book demonstrate features of the Go programming language (“golang”),
and the screenshots illustrate the actual results produced by the listed code examples. Certain
colorization conventions are used to clarify the code listed in the steps...

Program code is colored black but keywords and built-in functions of the Go language are
colored blue, literal text and numeric values are red, and code comments are green, like this:

package main
import “fmt”

main() {

 // My First Go Program.

fmt.Println(“Hello World!”)
}

During setup of Go, you will select a “GOPATH” location on your
computer in which to create programs. Each program will be created
within a uniquely named folder in a GOPATH sub-directory named “src”.
To identify the source code for the example programs described in the
steps, an icon and file path appears in the margin alongside the steps:

How to Use This Book

src/hello/main.go

Welcome to the exciting

world of programming with

Go. This chapter introduces

the language and creates a

workspace where you can

run your first Go program.

Meet the Go Language

Install the Go Tools

Create the Go Workspace

Write a Go Program

Run a Go Program

Format and Comment Code

Explore the VS Code Editor

Summary

8

10

12

14

16

17

18

20

Get Started1

8
G

et
 S

ta
rt

ed

Meet the Go Language

The Go gopher – the
iconic mascot of the Go
programming language.

Go is a free open-source programming language created at
Google by Robert Griesemer, Rob Pike, and Ken Thompson
– best known for development of the Unix operating system.
Google released version 1.0 of the Go language (“golang”) in
March 2012, since when it has gained widespread popularity.

Go programs are written in plain text, then compiled into machine
code by the Go compiler to produce an executable binary version.

ASM

Go Source
Code

Executable
Binary

Compiler
(Intermediate Assembly Code)

The aims of the Go programming language are to be expressive,
fast, efficient, reliable, and simple to write. Some programming
languages, such as C or C++, are fast and reliable but not simple.
Conversely, other programming languages such as Java or Python
are simple to write but not so efficient.

Go is similar to the C programming language in many ways, and
is sometimes referred to as a “C-like language” or “C for the 21st
century”. But Go is much more than that, as it adopts good ideas
from many other programming languages, yet avoids features that
lead to complexity or unreliability.

Perhaps most importantly, Go introduces the ability to take
advantage of multi-core CPU processing for concurrency using
“goroutines” and “channels”. This provides the potential for the
computer to deal with several things at the same time.

Although the Go language does not have the class structures
found in Object Oriented Programming (OOP) languages,
such as C++ or Java, its features do provide some degree of
encapsulation, inheritance, and polymorphism – the three
cornerstones of OOP.

You can discover many
more programming
language books in the
In Easy Steps series –
including C, C++, C#,
Java, and Python. Visit
www.ineasysteps.com
to find out more.

9

With so many programming languages to choose from, you may
be wondering why you should choose to learn Go programming –
so here are some of the advantages that Go offers:

Simple Syntax
The Go language is concise, like Python. It’s as simple to write as
Python but is more efficient, like C++. This enables you to write
code that is easy to read and maintain.

Compiled Language
The Go source code is compiled to binary machine code that can
be read directly by the computer, instead of being interpreted
every time a program runs. This enables the Go programs
you write to run faster than programs written for interpreted
languages, like Python or PHP.

The Go Compiler
The Go compiler is fast and provides additional benefits, such
as code optimization and error checking – it can detect unused
variables in your code, missing imports that your code requires,
and mistyped or invalid code. The Go compiler can also generate
executable binaries for other operating systems. This enables you
to compile your source code to run on multiple machines.

Concurrency
The Go language provides inherent support for concurrency with
goroutines and channels. This enables you to write multi-threaded
programs that could perform multiple tasks at the same time.

Garbage Collection
Automatic memory management is a key feature of the Go
language. Its garbage collector runs concurrently with the
program. This enables you to write program code without any
concern for memory leakage.

Static Typing
Go is a statically typed language in which variables are explicitly
declared to be of a particular fixed type. This enables errors to be
caught early in the development process.

You may well recognize other advantages as you gain experience
with the Go language, but right now it’s time to get started...

...cont’d

10
G

et
 S

ta
rt

ed

The Go installer for
Windows should
automatically add Go
to your system path
to make the Go tools
available at a command
prompt.

Install the Go Tools
To get started with the Go programming language, you must
first install the Go tools on your PC. These allow you to build,
run, and test programs written in the Go language. The Go tools
are supplied together with lots of standard packages of useful
trusted code that you can import into your own programs. The Go
language installers are available for Windows, macOS and Linux.

l1 Open a web browser and visit https://golang.org then
download the appropriate installer for your system

l2 When the download has completed, run the installer to
launch the “Go Programming Language Setup Wizard”

l3 Click Next to continue, then accept the license terms

l4 Accept the suggested Destination Folder (at C:\Go on
Windows), then click Install to complete the installation

11

The “WinKey” is the
keyboard key labeled
with the Windows logo.

...cont’d

l5 To test that
the installation
was successful,
first open
a Terminal
window – on
a Windows
system press
WinKey + R together, to open a “Run” dialog, then enter
cmd to open a “Command Prompt” window

l6 At the command prompt, type the command go then hit
Enter to see a list of Go tool commands

Although there are quite
a few Go tools, you will
mostly use only the run
tool to compile and run
your programs.

12
G

et
 S

ta
rt

ed

Create the Go Workspace
When you install Go, the installer sets a number of Go
environment variables. For example, the directory (folder) location
of the Go tools is stored in a GOROOT environment variable – by
default, at C:\Go on a Windows PC, and at /usr/local/go on Linux
and macOS.

The installer also sets a GOPATH environment variable for the
location of your workspace. By default, this is a directory named
“go” within your home directory. For example, on a Windows PC
its path is C:\Users\userName\go, on Linux systems its path is
/home/userName/go, and on macOS it’s at /Users/userName/go – but
the installer doesn’t actually create any directories.

To create the workspace, you can simply add a directory named
“go” in your home directory. You must then add sub-directories
named “bin”, “pkg” and “src” within the workspace directory – all
your Go programs can then be created inside the “src” directory.

It’s useful to have a shortcut on your desktop that will open a
command-line in this sub-directory to easily run your programs.

l1 On a Windows PC, open a Command Prompt window,
as described on page 11, or open a Terminal window

l2 Enter the command go env GOPATH to see the current
expected workspace location

bin pkg src

l3 Next, issue a mkdir command to create the “go” workspace
directory at the location specified by the GOPATH
environment variable

The go\src folder is
where you will save the
programs you write. The
go\bin and go\pkg will
be used later to store
executable files and
package archives.

The GO111MODULE
environment variable is
set to ON by default (this
was OFF by default in
earlier versions of GO).
The examples in this
book cannot be executed
as described until this is
turned OFF. You should
enter this command to
correct the issue:
set GO111MODULE=off

13

Go programs can be
written in a plain text
editor, such as Windows’
Notepad app. It’s useful
to have a desktop
shortcut that opens a
text editor in your “src”
directory folder. Repeat
the steps on this page,
but in Step 7 enter
notepad as the location
and Go Editor as the
name, to create another
useful desktop shortcut.

The mkdir command
name is simply short for
“make directory”.

...cont’d

l5 Right-click on a Windows desktop and select New,
Shortcut to open a “Create Shortcut” dialog

l6 Enter cmd as the location and click Next, then
enter Go Terminal as the name and click Finish
to create a shortcut icon on your desktop

l7 Right-click on the
shortcut icon and
select the Properties
item, to open its
“Properties” dialog

l8 Choose the Shortcut
tab, then enter the
location of your
workspace directory

l9 Click Apply, OK
to close the dialog,
then double-click the
shortcut icon to open a
command-line in your “src” folder

l4 Now, issue further mkdir commands to create the “bin”,
“pkg” and “src” sub-directories in the workspace directory

14
G

et
 S

ta
rt

ed

Capital P and lowercase
L in fmt.Println.

The arrangement of
files within folders is
important in Go. Each
main file, and any related
files, must be placed in
a uniquely named folder
to create a package –
so here the package is
named “hello”.

Write a Go Program
All Go programs start as plain text files that are later compiled
into actual executable programs. This means that Go programs can
be written in any plain text editor, such as the Windows’ Notepad
app or the Nano app on Linux.

Follow these steps to create a simple Go program that will output
the traditional first program greeting:

l1 Create a sub-directory named “hello” in your “src” folder

l2 Open a plain text editor, like Notepad, and type this code
exactly as it is listed to begin a program
package main

l3 Two lines below, insert this code exactly as it is listed
import “fmt”

l4 Two further lines below, precisely add this code
func main() {

fmt.Println(“Hello World!”)
}

l5 Save the file in the “hello” folder, and name it main.go –
the complete program should now look exactly like this:

src/hello/main.go

15

You can find the Go
standard library packages
in the “src” directory of
your GOROOT directory
location – for example,
at C:\Go\src. Additionally,
you can learn about
each package from the
official documentation at
https://golang.org/pkg –
an invaluable resource.

...cont’d

The separate parts of the program code on the opposite page can
be examined individually to understand each part more clearly:

The Package Declaration

package main

The package type is declared following the package keyword. All
Go program code is contained in packages. You may declare your
own type for a package that will be a shared library, but you must
declare the package “main” if you want the code to be compiled
into an executable program.

The Import Declaration

import “fmt”

The keyword import is used to import one, or more, packages
into this package to make their features available to this program.
The package “fmt” comes from the Go standard library that is
included in your Go installation. It provides the fmt.Println()
function that is used to output text in this program. Note that the
package name must be enclosed in double quote characters. When
importing multiple packages, the list of package names must be
enclosed within parentheses and each name must appear on its
own line, like this:
import (
 “fmt”
 “strings”
)

The Function Declaration

func main() {

 fmt.Println(“Hello World!”)
}

The function name follows the func keyword. It must be followed
by parentheses and an { opening curly bracket on the same
line. The function body contains statements that are the actual
instructions to perform program tasks. The function body must
end with a closing } curly bracket. Function names must be
unique, but each Go program must have a function named “main”
as this is the starting point of all Go programs.

The package name and
package type are two
separate items – here the
package is named hello,
but the type is main.

16
G

et
 S

ta
rt

ed

On Windows systems the
binary file is given the
file extension .exe, so the
file built here is hello.exe.

Run a Go Program
Go program code is compiled and executed using the Go tools.
During program development, an error-free Go program can
be compiled and run by the go run tool. This is useful, but if
you want to create an executable binary file version that can be
executed repeatedly and distributed, you can use the go build tool.

l1 Open a Command Prompt or Terminal window in your
Go “src” folder

l2 Enter the command go run hello to run the program
written on page 14 – it should output the greeting

l3 Next, enter the command go build hello to make an
executable binary version of the program on page 14 – it
should add an executable file in your “src” folder

l4 Now, twice enter the command hello on Windows,
or ./hello on Linux or macOS – it should output the
traditional greeting two times

17Comments should not
be “nested”, one inside
another.

The go fmt tool provides
some simple error
checking. For example,
omit a final “ double
quote and it will provide
the line number and
position where the error
occurs and provide
the nature of the error
as “string literal not
terminated”.

It is good practice to always ensure your Go source code is
properly formatted by the go fmt tool before running a program.

It is also good practice to include explanatory comments in your
source code so it can be more easily understood by others, and by
yourself when revisiting the code later. Single-line comments can be
added after a // character sequence – everything on the line after // is
ignored by the compiler. Multi-line comments can be added between
/* and */ character sequences – this is useful to “comment-out” blocks
of code, to hide it from the compiler during development.

l1 Edit the code in hello.go on page 14 to add a comment,
and unnecessary tab spacing (bad formatting)

Format and Comment Code

l2 Now, at a prompt, enter the command go fmt hello then
reopen the source code file to see correct formatting

18
G

et
 S

ta
rt

ed

Explore the VS Code Editor
Although you can create Go programs just fine with a command
prompt and plain text editor, many developers prefer to use a
specialized code editor app. These offer useful additional features
such as syntax highlighting, auto-indentation, bracket-matching
and code debugging. Perhaps the best free code editor is the
Visual Studio Code (“VS Code”) app from Microsoft. It’s
available for download at https://code.visualstudio.com/download
in versions for Windows, Linux and macOS.

When you download and install VS Code, you have only got
the code editor framework. VS Code can actually support many
different programming and scripting languages, so you have to
install an appropriate extension for the one you want to code with.

l1 Download and install VS Code

l2 To open the “Extensions Marketplace” sidebar, first click
View, Appearance, Show Activity Bar, then click the
Extensions button on the Activity Bar

l3 Next, type “go” into the search box to find the VS Code
extension for the Go programming language

l4 Click Install to add the Go language support to VS Code
– if asked to add further Go support, select Install All

19
...cont’d

l5 Click File, Add Folder to
Workspace and add your “go”
workspace folder containing the
“src” folder with your source code

l6 Click the Explorer button on the
Activity Bar, then select a file to
open in the main VS Code editor
window – for example, click the
main.go file in the “hello” folder

l7 Click View, Debug Console to
open an output panel – typically,
this will appear below the code
editor window, but can be moved

l8 Click Run, Run Without
Debugging to see the output
appear in the Debug Console

The VS Code app is
highly customizable –
you change the layout of
its components to your
liking and choose from
several light or dark color
themes. The screenshots
shown here depict the
default Light theme, and
the syntax highlighting
shown here in the
code editor window is
the same as that used
throughout this book.

20
G

et
 S

ta
rt

ed

Summary
• Go programs are plain text files that get compiled into

machine code to produce an executable binary version.

• The Go tools allow you to build, run, and test programs
written in the Go programming language.

• The Go installation includes standard packages of useful,
trusted code that you can import into programs.

• The command-line go command displays a list of the Go tool
commands.

• The GOROOT environment variable stores the location on your
system where the Go installation is located.

• The GOPATH environment variable stores the location on your
system where your Go workspace is located.

• The Go workspace is a directory name “go”, containing sub-
directories named “src”, “bin”, and “pkg”.

• The name of a Go package is that of the directory containing
the Go source code files.

• A Go package declaration specifies its type, and must be
specified as package main to be compiled into an executable.

• An import declaration quotes the name of any packages
whose features are to be made available to the program.

• A function declaration contains the func keyword followed by
the function name, () parentheses, and { } curly brackets.

• All Go programs must have a function named “main” as the
entry point into the program.

• The go run command compiles and runs a program.

• The go build command compiles a program and produces an
executable binary file that can be distributed.

• The go fmt command should be used to correctly format the
source code of a Go package.

• VS Code offers features such as syntax highlighting, auto-
indentation, bracket-matching, and code debugging.

	TOC_web
	01_web

