
Contents

Contents

Getting started	 7

Introducing C#	 8
Installing Visual Studio	 10
Exploring the IDE	 12
Starting a Console project	 14
Running a Console project	 16
Following the rules	 18
Summary	 20

Storing values	 21

Creating variables	 22
Reading input	 24
Employing arrays	 26
Casting data types	 28
Fixing constants	 30
Summary	 32

Performing operations	 33

Doing arithmetic	 34
Assigning values	 36
Comparing values	 38
Assessing logic	 40
Examining conditions	 42
Setting precedence	 44
Summary	 46

1

2

3



Making statements	 47

Branching with if	 48
Switching branches	 50
Looping for	 52
Looping while	 54
Iterating for each	 56
Summary	 58

Devising methods	 59

Creating function	 60
Passing arguments	 62
Overloading methods	 64
Refactoring code	 66
Summary	 68

Handling strings	 69

Discovering string features	 70
Manipulating strings	 72
Joining and comparing strings	 74
Copying and swapping strings	 76
Finding substrings	 78
Formatting strings	 80
Formatting date strings	 82
Summary	 84

Accessing files	 85

Writing a file	 86
Appending to a file	 88
Reading text and lines	 90
Streaming lines	 92
Manipulating input and output	 94
Summary	 96

4

5

6

7



Solving problems	 97

Detecting real-time errors	 98
Fixing compile-time errors	 100
Debugging code	 102
Setting breakpoints	 104
Catching runtime errors	 106
Getting help	 108
Summary	 110

Creating objects	 111

Encapsulating data	 112
Creating multiple objects	 114
Initializing class members	 116
Inheriting class properties	 118
Calling base constructors	 120
Hiding base methods	 122
Directing method calls	 124
Providing capability classes	 126
Employing partial classes	 128
Summary	 130

Controlling events	 131

Starting a Forms project	 132
Adding visual controls	 134
Writing functional code	 136
Gathering text entries	 138
Ticking option boxes	 140
Showing user messages	 142
Calling system dialogs	 144
Creating application menus	 146
Making menus work	 148
Importing audio resources	 150
Summary	 152

8

9

10



Building an application	 153

Planning the program	 154
Assigning fixed properties	 156
Designing the layout	 158
Setting dynamic properties	 160
Adding runtime function	 162
Testing the program	 164
Publishing the application	 166
Summary	 168

Targeting devices	 169

Starting a Universal project	 170
Inserting page components	 172
Importing program assets	 174
Designing the layout	 176
Adding runtime function	 178
Testing the program	 180
Adjusting the interface	 182
Deploying the application	 184
Summary	 186

Index	 187

11

12

The syntax highlighting of the C# code in this book’s easy steps is similar to 
the default colors in the Visual Studio Code Editor: 	  
Default Code Color: Black 	 Keywords: Blue	 Class Objects: Light Blue 
Class Methods: Brown	 String Literals: Red	 Comments: Green

The source code of all examples in this book is available for free download at  
www.ineasysteps.com/resource-center/downloads

The screenshots in this book illustrate the actual results of executing the 
listed code steps. If you don’t achieve the result illustrated in any example, 
simply compare your code to that in the original example files you have 
downloaded to discover where you went wrong.



Welcome to the exciting 

world of C# programming. 

This chapter introduces the 

Visual Studio Integrated 

Development Environment 

and shows you how to create 

a real Windows application.

Introducing C#

Installing Visual Studio

Exploring the IDE

Starting a Console project

Running a Console project

Following the rules

Summary

8

10

12

14

16

18

20

Getting started1



8
G

et
ti

ng
 s

ta
rt

ed

Introducing C#
The introduction of the Microsoft .NET framework at the 
Professional Developers Conference in July 2000 also saw 
Microsoft introduce a new programming language called C# 
(pronounced “see-sharp”). The name was inspired by musical 
notation where a # sharp symbol indicates that a written note 
should be a semitone higher in pitch. This notion is similar to the 
naming of the C++ programming language where the ++ symbol 
indicates that a written value should be incremented by 1.

•	 C# is designed to be a simple, modern, general-purpose, 
object-oriented programming language, borrowing key 
concepts from several other languages – most notably the 
Java programming language. Consequently, everything in C# 
is a class “object” with “properties” and “methods” that can be 
employed by a program.

•	 C# is an elegant and “type-safe” programming language that 
enables developers to build a variety of secure and robust 
applications. You can use C# to create Windows client 
applications, XML web services, distributed components, 
client-server applications, database applications, and much, 
much more.

•	 C# is specifically designed to utilize the proven functionality 
built into the .NET framework “class libraries”. Windows 
applications written in C# therefore require the Microsoft 
.NET framework to be installed on the computer running the 
application – typically, an integral component of the system.

The Microsoft .NET Framework
Each version of the Microsoft .NET framework includes a unified 
set of class libraries and a virtual execution system called the 
Common Language Runtime (CLR). The CLR allows the C# 
language and the class libraries to work together seamlessly.

To create an executable program, source code written in the C# 
language is compiled by the C# Compiler into Intermediate 
Language (IL) code. This is stored on disk, together with other 
program resources such as images, in an “assembly”. Typically, the 
assembly will have a file extension of .exe or .dll. Each assembly 
contains a “manifest” that provides information about that 
program’s security requirements.



9

Just-In-Time compilation 
is also known as 
“Dynamic Translation”.

Just-In-Time compilation 
occurs during program 
execution, rather than 
prior to its execution.

...cont’d

Operating System Execution

  Common Language Runtime (CLR) 
Security/JIT Compiler/Garbage Collection

Microsoft .NET Framework

C# Compiler

Assembly (IL Code & Resources)

C# Source File(s) Resources & 
 References

Visual Studio C# Project

When a C# program is executed, the assembly is loaded into 
the Common Language Runtime (CLR), and the security 
requirements specified in its assembly manifest are examined. 
When the security requirements are satisfied, the CLR 
performs Just-In-Time ( JIT) compilation of the IL code into 
native machine instructions. The CLR then performs “garbage 
collection”, exception handling, and resource management tasks 
before calling upon the operating system to execute the program:

As language interoperability is a key feature of the Microsoft 
.NET framework, the IL code generated by the C# Compiler 
can interact with code generated by the .NET versions of other 
languages such as Visual Basic and Visual C++. The examples 
throughout this book demonstrate Visual C# program code.



10
G

et
ti

ng
 s

ta
rt

ed

Installing Visual Studio
In order to create Windows applications with the C# 
programming language, you will first need to install a Visual 
Studio Integrated Development Environment (IDE).

Microsoft Visual Studio is the professional development tool that 
provides a fully Integrated Development Environment for Visual 
Basic, Visual C++, Visual J#, and Visual C#. Within its IDE, code 
can be written in Visual Basic, C++, J#, or the C# programming 
language to create Windows applications.

Visual Studio Community edition is a streamlined version 
of Visual Studio, specially created for those people learning 
programming. It has a simplified user interface and omits 
advanced features of the professional edition to avoid confusion. 
C# code can be written within the Code Editor of either version 
of the Visual Studio IDE to create Windows applications.

Both Visual Studio and Visual Studio Community provide 
an IDE for C# programming but, unlike the fully-featured 
Visual Studio product, the Visual Studio Community edition is 
completely free and can be installed on any system meeting the 
following minimum requirements:

Component Requirement

Operating system

Windows 11 
Windows 10 (version 1909 or higher) 
Windows Server 2016 or 2019 
*Must be the 64-bit version of any of 
the above the operating systems. 

CPU (processor) 1.8 GHz or faster, 64-bit processor

RAM (memory) 4 GB (16 GB recommended)

HDD (hard drive) Up to 210 GB available space

Video Card
Minimum resolution of 1366 x 768  
Optimum resolution of 1920 x 1080

The Visual Studio Community edition is used throughout this 
book to demonstrate programming with the C# language, but the 
examples can also be recreated in Visual Studio. Follow the steps 
opposite to install the Visual Studio Community edition.



11

Choosing a different 
destination folder may 
require other paths to 
be adjusted later – it’s 
simpler to just accept the 
suggested default.

Both Visual Studio and 
Visual Studio Installer 
items get added to your 
All Apps menu. You 
can re-run the installer 
at a later date to add or 
remove features.

...cont’d

l1	 Open your web browser and navigate to the Visual Studio 
download page – at the time of writing, this can be found 
at visualstudio.microsoft.com/downloads

l2	 Click the button in the Community edition section to 
download a VisualStudioSetup.exe setup file

l3	 Click on the  setup file icon to begin setup and to 
run the Visual Studio Installer

l4	 Accept the suggested installation location, then click Next

l5	 Check the two C# Installer options shown below

l6	 Click the Install button at the bottom-right of the 
installer to begin the download and installation process



12
G

et
ti

ng
 s

ta
rt

ed

Exploring the IDE
l1	 Go to your All apps menu, then select the Visual Studio 

2022 menu item added there by the installer:

l4	 For now, just click the Continue without code link to 
launch the Visual Studio application 

The Visual Studio Integrated Development Environment (IDE) 
appears, from which you have instant access to everything needed 
to produce complete Windows applications – from here, you can 
create exciting visual interfaces, enter code, compile and execute 
applications, debug errors, and much more.

l2	 Sign in with your Microsoft account, or register an 
account then sign in, to continue

l3	 See a default Start Page appear where recent projects will 
be listed alongside several “Get started” options

The first time Visual 
Studio starts it takes 
a few minutes as it 
performs configuration 
routines.

In the future your recent 
projects will be listed 
here so you can easily 
reopen them.



13
...cont’d

•	 Menu Bar – Where you can select actions to perform on all 
your project files and to access Help. When a project is open, 
extra menus of Project and Build are shown in addition to the 
default menu selection of File, Edit, View, Git, Project, Debug,  
Analyze, Tools, Extensions, Window, and Help.

•	 Toolbar – Where you can perform the most popular menu 
actions with a single click on their associated shortcut icons.

•	 Toolbox – Where you can select visual elements to add to 
a project. Click View, Toolbox or a side bar button to see its 
contents. When a project is open, “controls” such as Button, 
Label, CheckBox, RadioButton, and TextBox are shown here.

•	 Solution Explorer – Where you can see at a glance all the files 
and resource components contained within an open project.

•	 Status Bar – Where you can read the state of the current 
activity being undertaken. When building an application, a 
“Build started” message is displayed here, changing to a  
“Build succeeded” or “Build failed” message upon completion.

Visual Studio IDE components
The Visual Studio IDE initially provides these standard features:

Menu Bar

Toolbar

Toolbox

Solution Explorer

Status Bar

The IDE may have a 
Light color theme by 
default. To change the 
color theme, choose 
the Tools, Options 
menu then select 
Environment, General, 
Color Theme and select 
Blue or Dark theme, or 
select the Use  system 
setting option.

Notifications

Start Button



14
G

et
ti

ng
 s

ta
rt

ed

Starting a Console project
l1	 On the Menu Bar, click File, New, Project... or press  

Ctrl + Shift + N, to open the “Create a new project” dialog

Visual Studio now creates your new project and loads it into the 
IDE. A Code Editor window appears, containing default skeleton 
project code generated by Visual Studio.

l4	 Drag the Code Editor window tab to undock the Code 
Editor window from the Visual Studio IDE frame

The default location for 
Visual Studio projects 
is a C:\Users\username\
source\repos directory.

C#

GettingStarted

The source code of 
all examples in this 
book is available for 
free download at 
www.ineasysteps.
com/resource-center/
downloads

l2	 In the “Create a new project” dialog box, select the  
C# Console App item (for .NET Core on Windows, 
Linux and macOS), then click Next

If the Code Editor 
window does not open 
automatically, click the 
Program.cs file icon 
in Solution Explorer to 
open the Code Editor.

l3	 In the next dialog, enter a project name plus location and 
click the Create button, then select the .NET 6.0 (Long-
term support) framework and click Create again



15
...cont’d

The undocked window title displays the project name, and 
the tab displays the file name of the code as “Program.cs”.

You can drag the title 
bar of any window to 
undock that window 
from the Visual Studio 
IDE frame. When 
dragging, you can drop 
a window on the “guide 
diamond” (shown below) 
to dock the window in 
your preferred position.

The Code Editor window is where you write C# code to create 
an application. The Visual Studio IDE has now gathered all the 
resources needed to build a default Console application. 

The top-left drop-down box indicates the name of the project to 
which this file belongs – in this case, it’s “GettingStarted”.

l5	 Select the View, Solution 
Explorer menu to open a 
Solution Explorer window, 
to discover all the items 
in your project – click the 
arrow buttons to expand or 
collapse categories

l6	 Select 
the View, 
Properties 
Window 
menu to open 
a Properties 
window, then 
select any item 
in the Solution Explorer window to see its properties 
then appear in the Properties window



16
G

et
ti

ng
 s

ta
rt

ed

You will discover how 
to use breakpoints 
in Chapter 8 (Solving 
problems).

Running a Console project
C#

GettingStarted 
(continued)

In order to run a program, Visual Studio will first build the app 
then execute the app. This can be done in one of two modes:

•	 Debug Mode – The program is compiled with symbolic 
debugging information included in the program files. This 
allows Visual Studio’s built-in debugger to find bugs, but has 
optimization of Intermediate Language (IL) code disabled.

•	 Release Mode – The program is compiled without 
debugging information included in the program files, but has 
optimization of Intermediate Language (IL) code enabled.

During program development it is generally preferable to run your 
programs in Debug mode. There is an option to run a program in 
Debug mode without debugging, but it’s seldom desirable as this 
executes the program without the possibility of stepping through 
the code to breakpoints.

l1	 On the toolbar, set the solution configuration to Debug

l2	 Now, click the green arrow “Start” button to build and run 
the program with debugging enabled

Alternatively, select 
Debug, Start 
Debugging to build 
and run a program with 
debugging enabled.

l3	 See the app display a traditional greeting in the Console

l4	 Press any keyboard key to close the Console window, and 
return to the Visual Studio Code Editor



17
...cont’d

To edit the default 
Console window colors 
and font, right-click its 
window Titlebar and 
choose Properties. For 
clarity, all other Console 
window screenshots in 
this book feature Lucida 
Console 14-pixel Font 
in black Screen Text 
on a white Screen 
Background.

Code analysis
Examination of the code helps to understand what is happening:

•	 The first line is a comment. Anything on a line after // is 
ignored by the compiler. By default, comments are colored 
green in the Visual Studio Code Editor. In this case, the 
comment includes a hyperlink that will open a page in your 
web browser. The page explains how the .NET 6 framework 
uses new templates to simplify the creation of Console apps.

•	 Console.WriteLine( “Hello, World!” ) ; This is a statement 
that calls upon the WriteLine( ) method of the Console class 
to output the text string enclosed in quote marks within its 
parentheses. Notice that the statement is terminated by a ; 
semi-colon character. By default, class names are colored light 
blue, method names are colored brown, strings are colored 
red, and other code here is colored black.

l5	 Add another line to the code, as a statement to output a 
second text string containing your own name such as... 
Console.WriteLine( “Good afternoon, Mike!” ) ;

l6	 Run the modified code in Debug mode to see the result

New in .NET 6 are 
code templates, which 
the compiler uses to 
automatically generate 
namespace, class, and 
method elements when 
building a Console app. 



18
G

et
ti

ng
 s

ta
rt

ed

It is recommended that 
you comment your 
code to make it readily 
understood by others or 
when revisiting your own 
code later.

The WriteLine( ) 
method automatically 
adds a newline after its 
output.

As with all programming languages, C# has a number of syntax 
rules that must be precisely followed to ensure the code is 
correctly formatted for the C# compiler to clearly understand:

•	 Case-sensitivity – C# is a case-sensitive language, which 
means that uppercase “A” and lowercase “a” are regarded as 
totally different items.

•	 Termination – All statements in C# language must be 
terminated by a ; semicolon character, just as all sentences in 
English language must be terminated by a . period character 
– for example: Console.WriteLine( “Hello World!” ) ;

•	 Single-line comments – Brief comments on a single line 
must begin with // two forward slash characters – for 
example: // Output the traditional greeting.

•	 Block comments – Extended comments on multiple lines 
must begin with /* forward slash and asterisk characters, and 
must end with the reverse */ asterisk and forward slash – for 
example:	  
/* 
	  C# Programming in easy steps. 
  Getting started with the traditional greeting. 
*/

•	 White space – Spaces, tabs, newline characters, and 
comments are ignored by the C# compiler, so can be used 
extensively to organize code without performance penalty.

•	 Escape sequences – The C# compiler recognizes \n as a 
newline character and \t as a tab character, so these can be 
used to format output –  
for example: Console.WriteLine(“Line One \n Line Two”) ;

•	 Naming conventions – A programmer-defined identifier 
name in C# code may begin with an _ underscore character 
or a letter in uppercase or lowercase. The name may also 
contain underscore, letter, and number characters – for 
example: class MyNo1_Class

•	 Keywords – The C# language has a number of keywords 
(listed opposite) that have special syntactic meaning and may 
not be used to name programmer-defined items in code.

Following the rules



19
...cont’d

C# Reserved Keywords

abstract as base bool

break byte case catch 

char checked class const

continue decimal default delegate

do double else enum

event explicit extern false

finally fixed float for

foreach goto if implicit

in int interface internal

is lock long namespace

new null object operator

out override params private

protected public readonly ref

return sbyte sealed short

sizeof stackalloc static string

struct switch this throw

true try typeof uint

ulong unchecked unsafe ushort

using virtual void volatile

while

C# Contextual Keywords

add and alias ascending async

await by descending dynamic equals

from get global group init

into join let managed nameof

nint not notnull nuint on

or orderby partial record remove

select set unmanaged value var

when where with yield

If you absolutely must 
use a keyword to 
name a programmer-
defined element, it may 
be prefixed by an @ 
character to distinguish it 
from the keyword – but 
this is best avoided.

Contextual keywords 
have special significance 
in certain code – for 
example, get and set in 
method declarations.



20
G

et
ti

ng
 s

ta
rt

ed

Summary
•	 C# is an object-oriented programming language that utilizes 

the proven functionality of the Microsoft .NET class libraries.

•	 The C# compiler generates Intermediate Language (IL) code 
that is stored on disk alongside resources in an assembly.

•	 The Common Language Runtime (CLR) examines an 
assembly’s security requirements before JIT compilation.

•	 Just-In-Time compilation translates IL code into native 
machine code for execution by the operating system.

•	 Microsoft Visual Studio provides a fully Integrated 
Development Environment (IDE) for C# programming.

•	 A new Visual C# Console application generates default 
skeleton project code in the Visual Studio Code Editor.

•	 The Visual Studio Solution Explorer shows all files in a 
project, and the Properties window shows their properties.

•	 The default C# skeleton code provided in the Code Editor can  
create a C# Console program that outputs a text string.

•	 The Console class has a WriteLine( ) method that can be used to 
output a quoted text string specified within its parentheses.

•	 A C# program can be run in the Visual Studio IDE by 
selecting the Debug, Start Debugging menu, or by setting a  
Debug solution configuration and clicking the Start button. 

•	 C# is a case-sensitive programming language in which all 
statements must be terminated by a ; semicolon character.

•	 Single-line // comments and /* */ block comments can be 
incorporated to explain C# program code.

•	 C# has keywords that have special syntactic meaning, so 
cannot be used to name programmer-defined code items.


	TOC_web
	01_web

