
Getting Started 7

Programming Code 8

Setting Up 10

Exploring IDLE 12

Getting Help 14

Saving Programs 16

Storing Values 18

Adding Comments 20

Naming Rules 21

Summary 22

Saving Data 23

Storing Input 24

Controlling Output 25

Recognizing Types 26

Converting Data 28

Guessing Game 30

Correcting Errors 32

Summary 34

Performing Operations 35

Doing Arithmetic 36

Assigning Values 38

Comparing Values 40

Finding Truth 42

Examining Condition 44

Setting Order 46

Summary 48

Making Lists 49

Writing Lists 50

Changing Lists 52

Fixing Lists 54

Setting Lists 56

Naming Elements 58

Summary 60

Contents

1

3

2

4

Controlling Blocks 61

Branching Choices 62

Counting Loops 64

Looping Conditions 66

Skipping Loops 68

Catching Errors 70

Summary 72

Creating Functions 73

Defining Blocks 74
Adding Parameters 76

Returning Results 78

Storing Functions 80

Importing Functions 82

Summary 84

Sorting Algorithms 85

Copying Sorts 86

Selecting Sorts 88

Inserting Sorts 90

Bubbling Sorts 92

Merging Sorts 94

Partitioning Sorts 96

Summary 98

Importing Libraries 99

Inspecting Python 100

Doing Mathematics 102

Calculating Decimals 104

Telling Time 106

Running Timers 108

Summary 110

Managing Text 111

Manipulating Strings 112

Formatting Strings 114

Modifying Strings 116

Accessing Files 118

Manipulating Content 120

Updating Content 122

Summary 124

5

6

7

8

9

Programming Objects 125

Defining Classes 126
Copying Instances 128

Addressing Properties 130

Deriving Classes 132

Overriding Methods 134

Applying Sense 136

Summary 138

Building Interfaces 139

Launching Interfaces 140

Responding Buttons 142

Displaying Messages 144

Gathering Entries 146

Listing Options 148

Polling Radios 150

Checking Boxes 152

Adding Images 154

Summary 156

Developing Apps 157

Generating Randoms 158

Planning Needs 160

Designing Layout 162

Assigning Statics 164

Loading Dynamics 165

Adding Functionality 166

Testing Programs 168

Deploying Applications 170

Summary 172

Transferring Skills 173

Understanding Compilers 174

Compiling Code 176

Coding In C 178

Coding In C++ 180

Coding In C# 182

Coding In Java 184

Summary 186

Index 187

10

11

12

13

How To Use This Book
The creation of this book has provided me, Mike McGrath, a welcome opportunity to produce
an introduction to coding computer programs for readers with no previous coding experience.
Although this is a book for beginners, it goes beyond the mere basics so some topics may be
more easily understood after gaining some coding experience with the simpler listed programs.
The examples demonstrate coding features using the popular Python programming language.

Conventions in this book

In order to clarify the code listed in the steps given in each example, I have adopted the same
default colorization convention provided by Python’s code editor. Keywords of the Python
language itself are colored orange, built-in function names are purple, coder-specified function
names are blue, text strings are green, comments are red, and all other code is black, like this:

A function to display a greeting
def greet(reader) :
 print(‘Welcome to Coding for Beginners in easy steps’ , reader)

Additionally, in order to identify each source code file described in the steps, an
icon and file name appears in the margin alongside the steps.

Grabbing the source code

For convenience I have placed source code files from the examples featured in this book into a
single ZIP archive. You can obtain the complete archive by following these easy steps:

l1 Browse to www.ineasysteps.com and log in, then navigate to Free Resources and
choose the Downloads section

l2 Find Coding for Beginners in easy steps, 2nd edition in the list, then click on the
hyperlink entitled All code examples to download the archive

l3 Now, extract the archive contents to any convenient location on your computer

program.py

PY

The screenshots in this book illustrate the actual results of executing the
listed code steps. If you don’t achieve the result illustrated in any example,
simply compare your code to that in the original example files you have
downloaded to discover where you went wrong.

Welcome to the exciting, fun

world of computer coding!

This chapter describes

how to create your own

programming environment

and demonstrates how to

code your very first program.

Programming Code

Setting Up

Exploring IDLE

Getting Help

Saving Programs

Storing Values

Adding Comments

Naming Rules

Summary

8

10

12

14

16

18

20

21

22

Getting Started1

8
G

e
tt

in
g

 S
ta

rt
e
d

Programming Code
A computer is merely a machine that can process a set of simple
instructions very quickly. The set of instructions it processes is
known as a “program”, and the instructions are known as “code”.

People who write computer programs are known as “programmers”
or “coders”. Their programs have enabled computers to become
useful in almost every area of modern life:

• In the hand – computers are found in cellphone devices for
tasks such as communication via voice, text, and social media.

• In the home – computers are found in household devices
such as TV sets, gaming consoles, and washing machines.

• In the office – computers are found in desktop devices for
tasks such as word processing, payroll, and graphic design.

• In the store – computers are found in retail devices such as
automatic teller machines (ATMs) and bar code scanners.

• In the car – computers are found in control devices for tasks
such as engine management, anti-lock braking, and security.

• In the sky – computers are found in airplanes for piloting,
and in air traffic control centers for safe navigation.

These are, in fact, just a few examples of how computers affect our
lives today. Yet, computers are really dumb! They cannot think for
themselves.

A computer is a collection of electronic components – collectively
known as “hardware”. To make the computer function it must be
given a set of program instructions – known as “software”.

It is important that each computer program provides clear step-
by-step instructions that the computer can execute without errors.
The coder must therefore break down the task required of the
computer into simple unambiguous steps. For example, a program
to move a mobile robot from indoors to outdoors must include
instructions to have the robot locate a doorway and navigate
around any obstacles. So the coder must always consider what
possible unexpected difficulties a program may encounter.

9
...cont’d

Program instructions must be presented to the computer in a
language it can understand. At the most basic level the computer
can understand “machine code”, which moves items around in
its memory to perform tasks. This type of obscure low-level code
is incredibly tedious as it requires many lines of instruction to
perform even a simple task.

Fortunately, over the years, many “high-level” programming
languages have been developed that allow the coder to compose
instructions in more human-readable form. These modern high-
level programs are automatically translated into the machine
code that the computer can understand by a “compiler” or by an
“interpreter”. In order to become a coder you must typically learn
at least one of these high-level programming languages:

• C – A powerful compiled language that is closely mapped to
machine code and used to develop operating systems.

• C++ – An enhanced compiled language developing on C to
provide classes for Object Oriented Programming (OOP).

• C# – A modern compiled language designed by Microsoft for
the .NET framework and Common Language Infrastructure.

• Java – A portable compiled language that is designed to run
on any platform regardless of the hardware architecture.

• Python – A dynamic interpreted language that allows both
functional and Object Oriented Programming (OOP).

Just as human languages have similarities – such as verbs and
nouns – these programming languages have certain similarities as
they each possess “data structures” in which to store information,
and “control structures” that determine how the program proceeds.

The examples in this book use the Python language to
demonstrate how to code computer programs, as it has a simple
language syntax, requires no compilation, includes a large library
of standard functions, and can be used to create both Console
programs and windowed GUI (Graphical User Interface) apps.

Python is a total package
that has a “batteries
included” philosophy.

Programs written in an
interpreted language
can be run immediately,
but those written in
compiled languages
must first be compiled
before they can be run.

1
0

G
e
tt

in
g

 S
ta

rt
e
d

Setting Up
Before you can begin coding programs in the Python language
you need to set up a programming environment on your computer
by installing the Python interpreter and the standard library of
tested code modules that comes along with it. This is available
online as a free download from the Python Software Foundation.

l1 Launch a web browser and navigate to
python.org/downloads then click the
Download button to grab the latest
version for your system – in this
example it’s a Windows installer file
named “python-3.10.4-amd64.exe”

l2 When the download completes, find the executable (.exe)
file in your Downloads folder, then run the file to launch
the Python “Setup” dialog

l3 Next, be sure to check the Python Setup option box to
select the feature to Add Python 3.10 to PATH

l4 Now, click Customize installation to open an “Optional
Features” dialog, and select all options

l5 Click Next to open an “Advanced Options” dialog, then
choose to Associate files, Create shortcuts, and Add
Python to environment variables

Adding Python to the
System Path makes
it available from
within any directory.
After installation, you
can enter the exact
command python -V at a
Command Prompt to see
the interpreter respond
with its version number.

Installers for macOS
and other platforms are
also freely available at
python.org/downloads

1
1

...cont’d

Upon completion, the Python group
is added to your Start/All Apps menu.
Most important of this group is the
IDLE item that launches the Python
Integrated DeveLopment Environment.

You will use the IDLE
launcher often, so
right-click on its icon
and choose “More, Pin
to taskbar” to make it
readily available from the
Windows Desktop.

l6 Set the installation location to C:\Python, then click the
Install button

l7 If offered, click the option to Disable path length limit
to avoid any path-related issues

l8 Click the Close button to complete the Python Setup

Be sure to install the
Python package manager
pip. It will be used later
in this book to add a
PyInstaller package with
which you can create
distributable apps.

1
2

G
e
tt

in
g

 S
ta

rt
e
d

Exploring IDLE
The installed Python software package includes the Integrated
DeveLopment Environment (IDLE) in which you can easily code
and run programs or snippets written in the Python language.
IDLE provides two different windows for program development:

• Shell Window

• Edit Window

When you start up IDLE it opens a new window containing a
menu bar, a banner describing the version, and a >>> prompt.
This is the Shell Window in which you can interact directly with
the Python interpreter by entering statements at the prompt.

If the interpreter understands your entry it will respond with an
appropriate reply, otherwise it will report an error.

You can make the interpreter print out a string of text by entering
a Python print() function statement that encloses your string
within quote marks inside the parentheses at the interactive
prompt.

You can also make the interpreter print out the result of a simple
arithmetic sum by entering a valid sum statement at the prompt.

If your statement is not valid, such as a sum that attempts to
divide a number by 0, the interpreter will print out an error
message that helpfully describes the nature of the error.

Most programming
languages require text
strings to be enclosed
in quote marks to
differentiate them
from program code.
By convention, Python
coders use single quotes.

Menu bar

Interactive
prompt

Version banner

1
3

...cont’d

l1 Open an IDLE Shell Window, then precisely enter this
statement at the interactive prompt
print(‘Hello World!’)

l2 Next, hit the Return key to see the interpreter’s response

l5 Enter this invalid statement at the interactive prompt
8 / 0

l6 Hit Return to see the interpreter print an error message

l3 Now, enter this sum statement at the interactive prompt
8 + 4

l4 Hit Return to see the interpreter print the result total

Spaces in statements are
ignored – so 8+4 can be
entered without spaces.

The Shell Window is
mostly used to test
snippets of code.

1
4

G
e
tt

in
g

 S
ta

rt
e
d

Getting Help
The IDLE Shell Window provides a great help utility where you
can find help on any Python topic when coding Python programs.
Help can be sought by entering a Python help() statement at the
interactive >>> prompt. A welcome message appears, and the
prompt changes to help> to denote you are now in “help mode”.

l1 Open an IDLE Shell Window, then precisely enter this
statement at the interactive prompt
help()

l2 Next, hit the Return key to enter help mode

l3 Now, enter this topic name at the help utility prompt
keywords

l4 Hit Return to list all keywords of the Python language

The help utility welcome
message also contains
handy hints – but are
omitted here for brevity.

Keywords are the
vocabulary of a
programming language.
Note that Python
keywords are case-
sensitive – these are
all in lowercase except
False, None, and True.

1
5

...cont’d

l5 Then, enter this command at the help utility prompt
quit

l6 Hit Return to exit help mode and return to an interactive
Shell Window prompt

When you just want help on a single topic, you can simply enter
the topic name within quote marks inside the parentheses of a
help() statement at the interactive prompt:

l7 Precisely enter this statement at the interactive prompt
help(‘keywords’)

l8 Hit Return to list all keywords of the Python language
and remain at an interactive Shell Window prompt

There are no parentheses
required after the quit
instruction – here, it is
a help utility command,
not a Python statement.

Keywords have
special meaning in a
programming language
– they cannot be used to
name items in your code.

1
6

G
e
tt

in
g

 S
ta

rt
e
d

Saving Programs
The IDLE Shell Window, described on pages 14-15, is a great
place to try out snippets of code, but it cannot save your code.
Happily, IDLE also provides an Edit Window where you can
create longer pieces of programming code that can be stored in a
(.py) file on your computer. This means you can easily rerun the
code without retyping all the instructions at the Shell Window
>>> prompt, and this lets you edit your code to try new ideas.
The procedure to create, save, and run your code looks like this:

• Open an Edit Window from the Shell Window by selecting
File, New File from the Shell Window menu items – or by
pressing the Ctrl + N shortcut keys.

• Type code into the Edit Window, then save it by selecting
File, Save from the Edit Window menu items – or by
pressing the Ctrl + S shortcut keys.

• Run saved code from the Edit Window by selecting Run,
Run Module from the Edit Window menu items – or by
pressing the F5 shortcut key.

Output from your program code will appear in the Shell Window
as the program runs, or a helpful error message will appear there
if the interpreter discovers an error in your code.

l1 Open an IDLE Shell Window then select the File, New
File menu item to open an IDLE Edit Window

The procedure described
here will be used
to demonstrate the
code examples given
throughout this book.

Notice the File, Open or
File, Open Module... and
File, Recent Files menu
items that can be used
to rerun program code
previously saved.

1
7

...cont’d

l2 Now, in the IDLE Edit Window, precisely enter this code
print(‘Hello World!’)

l3 Next, in the IDLE Edit Window, select the File, Save
menu items, to open the “Save As” dialog, then save your
program code as a file named helloworld.py

l4 Finally, in the IDLE Edit Window, select the Run, Run
Module menu items, to run your program code and see
the output appear in the Shell Window

helloworld.py

PY

Your program code
can be saved at any
convenient location on
your computer – here,
it is saved in a directory
created at C:\MyCode
that will be used for all
examples in this book.

Notice that the Shell
Window restarts
whenever it runs your
program code afresh.

1
8

G
e
tt

in
g

 S
ta

rt
e
d

Storing Values
One essential feature of all computer programming languages is
the ability to store data values by the program code. This ability is
provided by a simple data structure called a “variable”. A variable
is a container in which an item of data can be stored, much like a
real-life object can be stored in a box.

When creating a variable, you give it a name of your choice –
subject to the naming conventions of the programming language
– that acts like a label on a box. The data item stored within the
variable can subsequently be retrieved using its given name – just
as you can find a real-life object in a box by reading its label.

Data to be stored in a variable can be assigned in a Python
program with the = assignment operator. For example, to store
the numeric value eight in a variable named “a”:

a = 8

The stored value can then be retrieved using the variable’s name,
so that the statement print(a) will output the stored value 8. That
variable can subsequently be assigned a different value, so its value
can vary as the program proceeds – hence the term “variable”.

In Python programming, a variable must be assigned an initial
value (“initialized”), otherwise its value remains undefined and the
interpreter will report a “not defined” error.

Multiple variables can be initialized with a common value in a
single statement using a sequence of = assignments. For example,
to initialize variables named “a”, “b” and “c” each with a numeric
value of 8, like this:

a = b = c = 8

Some programming languages, such as Java, demand you specify
in its declaration what type of data a variable may contain. This
reserves a specific amount of memory space and is known as
“static typing”. Python variables, on the other hand, have no such
limitation and adjust the memory allocation to suit the various
data values assigned to their variables (“dynamic typing”). This
means they can store integer whole numbers, floating-point
numbers (with a fractional part following the decimal point), text
strings, or Boolean values of True or False as required.

With static typing, the
variable type is checked
at compile time, but
with dynamic typing in
Python, the variable type
is checked at runtime.

1
9

...cont’d

firstvar.py

PYl1 Open an IDLE Edit Window, then enter code to create a
variable named “var” to store a whole (integer) number
var = 8

l2 Next, add a statement to display the stored integer value
print(var)

l3 Assign a new floating-point (float) number to the variable,
then add a statement to display the stored float value
var = 3.142
print(var)

l4 Now, assign a text string to the variable, then add a
statement to display the stored string value
var = ‘Coding for Beginners in easy steps’
print(var)

l5 Finally, assign a logical truth value to the variable, then
add a statement to display the stored Boolean value
var = True
print(var)

l6 Save the file (File, Save) then run the program (Run,
Run Module) to see the stored values displayed in output

Text string data must be
enclosed within quote
marks to denote the
start and end of that
particular string.

2
0

G
e
tt

in
g

 S
ta

rt
e
d

Adding Comments

Color Description Example

Built-in function names print()

Strings in quote marks ‘Hello World!’

Symbols, numbers and names 8 + 4

Shell Window output
Coder-created function names
in the function declaration

Hello World!

my_function()

Keywords True

Edit Window comments and
Shell Window errors

My comments
ZeroDivisionError

When you begin to code longer programs it is useful to add
comments at the start of each piece of code describing the
purpose of that piece. This makes the code more easily understood
by others, and by yourself when revisiting the code at a later date.
In the Python programming language, everything on a single line
after a # hash character is ignored by the interpreter. This means
that a single-line comment can be inserted after a # character.

l1 Open an IDLE Edit Window, then enter commented
code to initialize a variable and display its value
Initialize program status
running = True
print(‘Run state: ‘ , running)

l2 Save the file, then run the program to see the comment
get ignored and the stored value displayed in the output

To readily identify aspects of your code, IDLE automatically
colorizes your code, both in the Shell Window and the Edit
Window, with the default colors listed in the table below:

comment.py

PY

Code listed in the
steps throughout this
book also uses the
default IDLE colors for
consistency.

2
1

Keywords

False None True

and as assert

async await break

class continue def

del elif else

except finally for

from global if

import in is

lambda nonlocal not

or pass raise

return try while

with yield

Naming Rule Example

CANNOT be a keyword True

CANNOT contain arithmetic operators a+b*c

CANNOT contain symbols %$#@!

CANNOT contain any spaces no spaces

CANNOT start with a number 2bad

CAN contain numbers elsewhere good1

CAN contain letters of mixed case UPdown

CAN contain underscores is_ok

Variable containers that you create in your code to store data
within a program can be given any name of your choosing,
providing you do not use any of the programming language
keywords – such as the Python keywords in the table above – and
the name adheres to the naming rules listed in the table below:

Naming Rules

It is good programming
practice to choose
meaningful names that
reflect the nature of the
variable’s content.

Variable names are case-
sensitive in Python – so
variables named “VAR”,
“Var”, and “var” would
be treated as three
separate variables.

2
2

G
e
tt

in
g

 S
ta

rt
e
d

• A computer program is a set of instructions written by a
coder that enable computers to become useful.

• The electronic components of a computer are its hardware,
whereas program instructions are its software.

• Computers understand low-level machine code.

• High-level programming languages in human-readable form
get automatically translated into low-level machine code.

• Programming languages possess data structures to store
information and control structures to determine progress.

• The Python programming language has simple syntax,
requires no manual compilation, and includes a library of
functions.

• Python’s development environment is called IDLE
(Integrated DeveLopment Environment).

• IDLE provides a Shell Window containing an interactive
prompt for testing, and an Edit Window for coding
programs.

• The IDLE help utility is accessed by entering a help()
statement at a Shell Window prompt.

• After typing program code into an IDLE Edit Window it
must first be saved as a file before the program can be run.

• Output from a program run from the Edit Window appears
in the Shell Window, or a helpful error message appears.

• A variable is a named container that allows a single item of
data to be stored for use by a program.

• Data stored in a variable can be retrieved using that variable’s
name, and may be replaced by assigning a new value.

• Variables in Python programming can store any type of data.

• Comments can usefully be added to program code after
beginning the comment with a # hash character.

• Variable names must not use any of the programming
language keywords, and must adhere to its naming rules.

Summary

	TOC_web
	01_web

