
Contents

Getting started 7

Introducing C++ 8
Installing a compiler 10
Writing your first program 12
Compiling & running programs 14
Creating variables 16
Employing variable arrays 18
Employing vector arrays 20
Declaring constants 22
Summary 24

Performing operations 25

Doing arithmetic 26
Assigning values 28
Comparing values 30
Assessing logic 32
Examining conditions 34
Establishing size 36
Setting precedence 38
Casting data types 40
Summary 42

Making statements 43

Branching with if 44
Switching branches 46
Looping for 48
Looping while 50
Declaring functions 52
Passing arguments 54
Overloading functions 56
Optimizing functions 58
Summary 60

3

1

2

Handling strings 61

Creating string variables 62
Getting string input 64
Solving the string problem 66
Discovering string features 68
Joining & comparing strings 70
Copying & swapping strings 72
Finding substrings 74
Replacing substrings 76
Summary 78

Reading and writing files 79

Writing a file 80
Appending to a file 82
Reading characters & lines 84
Formatting with getline 86
Manipulating input & output 88
Predicting problems 90
Recognizing exceptions 92
Handling errors 94
Summary 96

Pointing to data 97

Understanding data storage 98
Getting values with pointers 100
Doing pointer arithmetic 102
Passing pointers to functions 104
Making arrays of pointers 106
Referencing data 108
Passing references to functions 110
Comparing pointers & references 112
Summary 114

Creating classes and objects 115

Encapsulating data 116
Creating an object 118
Creating multiple objects 120
Initializing class members 122
Overloading methods 124
Inheriting class properties 126

4

5

6

7

Calling base constructors 128
Overriding base methods 130
Summary 132

Harnessing polymorphism 133

Pointing to classes 134
Calling a virtual method 136
Directing method calls 138
Providing capability classes 140
Making abstract data types 142
Building complex hierarchies 144
Isolating class structures 146
Employing isolated classes 148
Summary 150

Processing macros 151

Exploring compilation 152
Defining substitutes 154
Defining conditions 156
Providing alternatives 158
Guarding inclusions 160
Using macro functions 162
Building strings 164
Debugging assertions 166
Summary 168

Programming visually 169

Starting a Universal project 170
Inserting page components 172
Importing program assets 174
Designing the layout 176
Adding runtime function 178
Testing the program 180
Adjusting the interface 182
Deploying the application 184
Summary 186

Index 187

8

9

10

Preface

The creation of this book has provided me, Mike McGrath, a welcome opportunity to update
my previous books on C++ programming with the latest techniques. All examples I have given
in this book demonstrate C++ features supported by current compilers on both Windows and
Linux operating systems, and in the Microsoft Visual Studio development suite. The book’s
screenshots illustrate the actual results produced by compiling and executing the listed code. I
sincerely hope you enjoy discovering the powerful, expressive possibilities of C++ Programming
and have as much fun with it as I did in writing this book.

Conventions in this book

In order to clarify the code listed in the steps given in each example, I have adopted certain
colorization conventions. Components of the C++ language itself are colored blue, numeric and
string values are red, programmer-specified names are black, and comments are green, like this:

// Store then output a text string value.
string myMessage = “Hello from C++!” ;
cout << myMessage ;

Additionally, in order to identify each source code file described in
the steps, a colored icon and file name appears in the margin
alongside the steps:

Grabbing the source code

For convenience I have placed source code files from the examples featured in this book into
a single ZIP archive, providing versions for Windows and Linux platforms plus the Microsoft
Visual Studio IDE. You can obtain the complete archive by following these easy steps:

l1 Browse to www.ineasysteps.com then navigate to Free Resources and choose the
Downloads section

l2 Find C++ Programming in easy steps, 6th edition in the list then click on the
hyperlink entitled All Code Examples to download the archive

l3 Now, extract the archive contents to any convenient location on your computer

main.cpp header.h

C++ H

If you don’t achieve the result illustrated in any example, simply compare your code to that
in the original example files you have downloaded to discover where you went wrong.

Welcome to the exciting

world of C++ programming.

This chapter demonstrates

how to create a simple C++

program and how to store

data within a program.

Introducing C++

Installing a compiler

Writing your first program

Compiling & running programs

Creating variables

Employing variable arrays

Employing vector arrays

Declaring constants

Summary

8

10

12

14

16

18

20

22

24

Getting started1

8
G

e
tt

in
g

 s
ta

rt
e
d

Microsoft’s free Visual
Studio Community
Edition IDE is used in
this book to demonstrate
visual programming.

Introducing C++
C++ is an extension of the C programming language that was first
implemented on the UNIX operating system by Dennis Ritchie
way back in 1972. C is a flexible programming language that
remains popular today, and is used on a large number of platforms
for everything from microcontrollers to the most advanced
scientific systems.

C++ was developed by Dr. Bjarne Stroustrup between 1983 and
1985 while working at AT&T Bell Labs in New Jersey. He added
features to the original C language to produce what he called
“C with classes”. These classes define programming objects with
specific features that transform the procedural nature of C into
the object-oriented programming language of C++.

The C programming language was so named as it succeeded
an earlier programming language named “B” that had been
introduced around 1970. The name “C++” displays some
programmers’ humor because the programming ++ increment
operator denotes that C++ is an extension of the C language.

C++, like C, is not platform-dependent, so programs can be
created on any operating system. Most illustrations in this book
depict output on the Windows operating system purely because it
is the most widely used desktop platform. The examples can also
be created on other platforms such as Linux or macOS.

Why learn C++ programming?
The C++ language is favored by many professional programmers
because it allows them to create fast, compact programs that are
robust and portable.

Using a modern C++ Integrated Development Environment
(IDE), such as Microsoft’s Visual Studio Community Edition,
the programmer can quickly create complex applications. But to
use these tools to greatest effect, the programmer must first learn
quite a bit about the C++ language itself.

This book is an introduction to programming with C++, giving
examples of program code and its output to demonstrate the
basics of this powerful language.

A powerful
programming language
(pronounced “see plus
plus”), designed to let
you express ideas.

9

“ISO” is not an acronym
but is derived from
the Greek word “isos”
meaning “equal” – as in
“isometric”.

…cont’d

Should I learn C first?
Opinion is divided on the question of whether it is an advantage
to be familiar with C programming before moving on to C++.
It would seem logical to learn the original language first in order
to understand the larger extended language more readily. However,
C++ is not simply a larger version of C, as the approach to object-
oriented programming with C++ is markedly different to the
procedural nature of C. It is, therefore, arguably better to learn
C++ without previous knowledge of C to avoid confusion.

This book makes no assumption that the reader has previous
knowledge of any programming language, so it is suitable for the
beginner to programming in C++, whether they know C or not.

If you do feel that you would benefit from learning to program in
C before moving on to C++, we recommend you try the examples
in C Programming in easy steps before reading this book.

Standardization of C++
As the C++ programming language gained in popularity, it
was adopted by many programmers around the world as their
programming language of choice. Some of these programmers
began to add their own extensions to the language, so it became
necessary to agree upon a precise version of C++ that could be
commonly shared internationally by all programmers.

A standard version of C++ was defined by a joint committee
of the American National Standards Institute (ANSI) and the
Industry Organization for Standardization (ISO). This version is
sometimes known as ANSI C++, and is portable to any platform
and to any development environment.

The examples given in this book conform to ANSI C++.
Example programs run in a console window, such as the
Command Prompt window on Windows systems or a shell
terminal window on Linux systems, to demonstrate the
mechanics of the C++ language itself. An example in the final
chapter illustrates how code generated automatically by a visual
development tool on the Windows platform can, once you’re
familiar with the C++ language, be edited to create a graphical,
windowed application.

1
0

G
e
tt

in
g

 s
ta

rt
e
d

Installing a compiler
C++ programs are initially created as plain text files, saved with
the file extension of “.cpp”. These can be written in any text editor,
such as Windows’ Notepad application or the Vi editor on Linux.

In order to execute a C++ program, it must first be “compiled”
into byte code that can be understood by the computer. A C++
compiler reads the text version of the program and translates it
into a second file – in machine-readable, executable format.

Should the text program contain any syntax errors, these will be
reported by the compiler and the executable file will not be built.

If you are using the Windows platform and have a C++
Integrated Development Environment (IDE) installed, then you
will already have a C++ compiler available, as the compiler is
an integral part of the visual IDE. The excellent, free Microsoft
Visual C++ Express IDE provides an editor window, where the
program code can be written, and buttons to compile and execute
the program. Visual IDEs can, however, seem unwieldy when
starting out with C++ because they always create a large number
of “project” files that are used by advanced programs.

The popular free GNU Compiler Collection, which includes a
C Compiler, is included with most distributions of the Linux
operating system. The GNU C++ Compiler is also available for
Windows platforms and is used to compile examples throughout
this book.

To discover if you already have the GNU C++ Compiler on your
system, type c++ -v at a command prompt then hit Return. If it’s
available, the compiler will respond with version information. If
you are using the Linux platform and the GNU C++ Compiler
is not available on your computer, install it from the distribution
disc, download it from the GNU website, or ask your system
administrator to install it.

The GNU (pronounced “guh-new”) Project was launched back in
1984 to develop a complete free Unix-like operating system. Part
of GNU is “Minimalist GNU for Windows” (MinGW). MinGW
includes the GNU C++ Compiler that can be used on Windows
systems to create executable C++ programs. Windows users can
download and install the GNU C++ Compiler by following the
instructions on the opposite page.

The GNU C++ compiler
is available free under
the terms and conditions
of the General Public
License (GPL) that can be
found online at gnu.org/
copyleft/gpl.html

To open a Windows
Command Prompt, press
the Windows + R keys
to launch a Run dialog,
then type cmd into the
dialog and hit Enter.

R

1
1

...cont’d

l1 With an internet connection, launch a web browser then
navigate to osdn.net/projects/mingw and click the link
to download the MinGW installer mingw-get-setup.exe

l2 Launch the installer setup and accept the suggested
location of C:\MinGW in the “Installation Manager” dialog

l3 Check the Basic MinGW and C++ Compiler items,
then click Installation, Apply Changes, Apply to install

The MinGW C++ Compiler is a binary executable file located at
C:\MinGW\bin. To allow it to be accessible from any system
location, this folder should now be added to the System Path:

l4 Open Windows’ “System Properties” dialog, then select
the Advanced tab and click the Environment Variables
button – to open the “Environment Variables” dialog

l5 Select the Path system variable, then click the Edit
button and add the location C:\MinGW\bin;

l6 Click OK to close each dialog, then open a Command
Prompt window and enter the command c++. If the
installation is successful, the compiler should respond that
you have not specified any input files for compilation:

To open a System
Properties dialog, press
the Windows + R keys
to launch a Run dialog,
then type sysdm.cpl into
the dialog and hit Enter.

R

1
2

G
e
tt

in
g

 s
ta

rt
e
d

After typing the final
closing } brace of the
main method, always hit
Return to add a newline
character – your compiler
may insist that a source
file should end with a
newline character.

Comments throughout
this book are shown in
green – to differentiate
them from other code.

Writing your first program
Follow these steps, copying the code exactly as it is listed, to
create a simple C++ program that will output the traditional first
program greeting:

l1 Open a plain text editor, such as Windows’ Notepad, then
type these “preprocessor directives”
#include <iostream>
using namespace std ;

l2 A few lines below the preprocessor directives, add a
“comment” describing the program
// A C++ Program to output a greeting.

l3 Below the comment, add a “main function” declaration to
contain the program statements
int main()
{

}

l4 Between the curly brackets (braces) of the main function,
insert this output “statement”
cout << “Hello World!” << endl ;

l5 Next, insert a final “return” statement in the main function
return 0 ;

l6 Save the program to any convenient location as
“hello.cpp” – the complete program should look like this:

C++

hello.cpp

1
3

The C++ compiler also
supports multiple-line
C-style comments
between /* and */
– but these should
only ever be used in
C++ programming
to “comment-out”
sections of code when
debugging.

The separate parts of the program code on the opposite page can
be examined individually to understand each part more clearly:

• Preprocessor Directives – these are processed by the compiler
before the program code, so must always appear at the start of
the page. Here, the #include directive instructs the compiler
to use the standard C++ input/output library named iostream,
specifying the library name between < > angled brackets. The
next line is the “using directive” that allows functions in the
specified namespace to be used without their namespace prefix.
Functions of the iostream library are within the std namespace
– so this using directive allows functions such as
std::cout and std::endl to be simply written as cout and endl.

• Comments – these should be used to make the code more
easily understood by others, and by yourself when revisiting the
code later. In C++ programming, everything on a single line
after a // double-slash is ignored by the compiler.

• Main function – this is the mandatory entry point of every
C++ program. Programs may contain many functions, but they
must always contain one named main, otherwise the compiler
will not compile the program. Optionally, the parentheses
after the function name may specify a comma-separated list
of “argument” values to be used by that function. Following
execution, the function must return a value to the operating
system of the data type specified in its declaration – in this
case, an int (integer) value.

• Statements – these are the actions that the program will
execute when it runs. Each statement must be terminated by a
semi-colon, in the same way that English language sentences
must be terminated by a period (full stop). Here, the first
statement calls upon the cout library function to output text
and an endl carriage return. These are directed to standard
output by the << output stream operator. Notice that text
strings in C++ must always be enclosed within double quotes.
The final statement employs the C++ return keyword to return
a zero integer value to the operating system – as required by
the main function declaration. Traditionally, returning a zero
value indicates that the program executed successfully.

…cont’d

Notice how the program
code is formatted using
spacing and indentation
(collectively known
as whitespace) to
improve readability. All
whitespace is ignored by
the C++ compiler.

1
4

G
e
tt

in
g

 s
ta

rt
e
d

You can see the compiler
version number with the
command
c++ --version and
display all its options
with c++ --help

The command c++ is an
alias for the GNU C++
Compiler – the command
g++ can also be used.

Compiling & running programs
The C++ source code files for the examples in this book are stored
in a directory created expressly for that purpose. The directory is
named “MyPrograms” – its absolute address on a Windows system
is C:\MyPrograms and on Linux it’s /home/user/MyPrograms. You
can recreate this directory to store programs awaiting compilation:

l1 Move the “hello.cpp” program source code file, created on
page 12, to the “MyPrograms” directory on your system

l2 At a command prompt, use the “cd” command to navigate
to the “MyPrograms” directory

l3 Enter a command to attempt to compile the program
c++ hello.cpp

When the attempt succeeds, the compiler creates an executable
file alongside the original source code file. By default, the
executable file is named a.exe on Windows systems and a.out
on Linux. Compiling a different source code file in the same
directory would now overwrite the first executable file without
warning. This is obviously undesirable, so a custom name for the
executable file should be specified when compiling programs,
using the compiler’s -o option in the compile command.

l4 Enter a command to compile the program, creating an
executable file named “hello.exe” alongside the source file
c++ hello.cpp -o hello.exe

1
5

All command line
examples in this book
have been compiled and
tested with the latest
GNU C++ Compiler
available at the time of
writing – they may not
replicate exactly with
other compilers.

…cont’d

l5 To run the generated executable program file in
Windows, simply enter the file name at the prompt in the
“MyPrograms” directory – optionally, the file extension
may be omitted. In Linux, the full file name must be used,
preceded by a ./ dot-slash – as Linux does not look in the
current directory unless it is explicitly directed to do so:

1
6

G
e
tt

in
g

 s
ta

rt
e
d

Names are case-sensitive
in C++ – so variables
named VAR, Var,
and var are treated
as three individual
variables. Traditionally,
C++ variable names
are lowercase and
seldom begin with an
underscore, as some
C++ libraries use that
convention.

Data Type Description Example

char
A single byte, capable of
holding one character

‘A’

int An integer whole number 100

float
A floating-point number,
correct to six decimal places

0.123456

double
A floating-point number,
correct to 10 decimal places

0.0123456789

bool

A Boolean value of true or
false, or numerically zero is
false and any non-zero is true

false or 0

true or 1

Creating variables
A “variable” is like a container in a C++ program in which a data
value can be stored inside the computer’s memory. The stored
value can be referenced using the variable’s name.

The programmer can choose any name for a variable, providing
it adheres to the C++ naming conventions – a chosen name may
only contain letters, digits, and the underscore character, but
cannot begin with a digit. Also, the C++ keywords, listed on the
inside cover of this book must be avoided. It’s good practice to
choose meaningful names to make the code more comprehensible.

To create a new variable in a program it must be “declared”,
specifying the type of data it may contain and its chosen name.
A variable declaration has this syntax:

data-type variable-name ;

Multiple variables of the same data type can be created in a single
declaration as a comma-separated list with this syntax:

data-type variable-name1 , variable-name2 , variable-name3 ;

The five basic C++ data types are listed in the table below,
together with a brief description and example content:

Variable declarations must appear before executable statements –
so they will be available for reference within statements.

Character values of the
char data type must
always be enclosed
between single quotes –
not double quotes.

1
7

Always begin Boolean
variable names with
“is” so they are
instantly recognizable
as Booleans. Also, use
“lowerCamelCase” for
all variable names that
comprise multiple words
– where all except the
first word begin with
uppercase, like “isTrue”.

…cont’d

When a value is assigned to a variable it is said to have been
“initialized”. Optionally, a variable may be initialized in its
declaration. The value stored in any initialized variable can be
displayed on standard output by the cout function, which was
used on page 12 to display the “Hello World!” greeting.

l1 Start a new program by specifying the C++ library classes
to include, and a namespace prefix to use
#include <iostream>
using namespace std ;

l2 Add a main function containing a final return statement
int main()
{
 // Program code goes here.
 return 0 ;
}

l3 In the main function, insert statements to declare and
initialize variables of various data types
char letter ; letter = ‘A’ ; // Declared then initialized.
int number ; number = 100 ; // Declared then initialized.
float decimal = 7.5 ; // Declared and initialized.
double pi = 3.14159 ; // Declared and initialized.
bool isTrue = false ; // Declared and initialized.

l4 Now, insert statements to output each stored value
cout << “char letter: ” << letter << endl ;
cout << “int number: ” << number << endl ;
cout << “float decimal: ” << decimal << endl ;
cout << “double pi: ” << pi << endl ;
cout << “bool isTrue: ” << isTrue << endl ;

l5 Save, compile, and run the program to see the output

C++

vars.cpp

1
8

G
e
tt

in
g

 s
ta

rt
e
d

Array numbering starts
at 0 – so the final
element in an array of six
elements is number 5,
not number 6.

Employing variable arrays
An array is a variable that can store multiple items of data –
unlike a regular variable, which can only store one piece of data.
The pieces of data are stored sequentially in array “elements” that
are numbered, starting at 0. So, the first value is stored in element
0, the second value is stored in element 1, and so on.

An array is declared in the same way as other variables, but
additionally the size of the array must also be specified in the
declaration, in square brackets following the array name. For
example, the syntax to declare an array named “nums” to store six
integer numbers looks like this:

int nums[6] ;

Optionally, an array can be initialized when it is declared by
assigning values to each element as a comma-separated list
enclosed by curly brackets (braces). For example:

int nums[6] = { 0, 1, 2, 3, 4, 5 } ;

An individual element can be referenced using the array name
followed by square brackets containing the element number. This
means that nums[1] references the second element in the example
above – not the first element, as element numbering starts at 0.

Arrays can be created for any C++ data type, but each element
may only contain data of the same data type. An array of
characters can be used to store a string of text if the final element
contains the special \0 null character. For example:

char name[5] = { ‘m’, ‘i’, ‘k’, ‘e’, ‘\0’ } ;

The entire string to be referenced just by the array name. This is
the principle means of working with strings in the C language,
but the C++ string class, introduced in Chapter 4, is far simpler.

Collectively, the elements of an array are known as an “index”.
Arrays can have more than one index – to represent multiple
dimensions, rather than the single dimension of a regular array.
Multi-dimensional arrays of three indices and more are
uncommon, but two-dimensional arrays are useful to store
grid-based information, such as coordinates. For example:

int coords[2] [3] = { { 1, 2, 3 } , { 4, 5, 6 } } ;

[0]

[1]

[0]

[2][1]

1

654

32

1
9

Where possible, variable
names should not
be abbreviations –
abbreviated names are
only used in this book’s
examples due to space
limitations.

The loop structures,
introduced in Chapter 3,
are often used to iterate
array elements.

…cont’d

C++

arrays.cpp

l1 Start a new program by specifying the C++ library classes
to include, and a namespace prefix to use
#include <iostream>
using namespace std ;

l2 Add a main function containing a final return statement
int main()
{
 // Program code goes here.
 return 0 ;
}

l3 In the main function, insert statements to declare and
initialize three variable arrays
// Declared then initialized.
float nums[3] ;
nums[0] = 1.5 ; nums[1] = 2.75 ; nums[2] = 3.25 ;

// Declared and initialized.
char name[5] = { ‘m’, ‘i’, ‘k’, ‘e’, ‘\0’ } ;
int coords[2] [3] = { { 1, 2, 3 } , { 4, 5, 6 } } ;
}

l4 Now, insert statements to output specific element values
cout << “nums[0]: ” << nums[0] << endl ;
cout << “nums[1]: ” << nums[1] << endl ;
cout << “nums[2]: ” << nums[2] << endl ;
cout << “name[0]: ” << name[0] << endl ;
cout << “Text string: ” << name << endl ;
cout << “coords[0][2]: ” << coords[0][2] << endl ;
cout << “coords[1][2]: ” << coords[1][2] << endl ;

l5 Save, compile, and run the program to see the output

2
0

G
e
tt

in
g

 s
ta

rt
e
d

Individual vector
elements can be
referenced using square
brackets as with regular
arrays, such as vec[3]

Function: Description:

at(number)
Gets the value contained in the specified
element number

back() Gets the value in the final element

clear() Removes all vector elements

empty()
Returns true (1) if the vector is empty,
or returns false (0) otherwise

front() Gets the value in the first element

pop_back() Removes the final element

push_back(value)
Adds a final element to the end of the
vector, containing the specified value

size() Gets the number of elements

Employing vector arrays
A vector is an alternative to a regular array, and has the advantage
that its size can be changed as the program requires. Like regular
arrays, vectors can be created for any data type, and their elements
are also numbered starting at 0.

In order to use vectors in a program, the C++ vector library must
be added with an #include <vector> preprocessor directive at the
start of the program. This library contains the predefined functions
in the table below, which are used to work with vectors:

A declaration to create a vector looks like this:

vector < data-type > vector-name (size) ;

An int vector will, by default, have each element automatically
initialized with a zero value. Optionally, a different initial value
can be specified after the size in the declaration, with this syntax:

vector < data-type > vector-name (size , initial-value) ;

The functions to work with vectors are simply appended to the
chosen vector name by the dot operator. For example, to get the
size of a vector named “vec” you would use vec.size()

2
1

The example on page 50
shows how to use a loop
to populate a vector with
different initial values in
each element.

…cont’d

C++

vector.cpp

l1 Start a new program by specifying the C++ library classes
to include, and a namespace prefix to use
#include <vector> // Include vector support.
#include <iostream>
using namespace std ;

l2 Add a main function containing a final return statement
int main()
{
 // Program code goes here.
 return 0 ;
}

l3 In the main function, insert a statement to declare and
initialize a vector array of three elements of the value 100
vector <int> vec(3, 100) ;

l4 Now, insert statements to manipulate the vector elements
cout << “Vector size: ” << vec.size() << endl ;
cout << “Is empty?: ” << vec.empty() << endl ;
cout << “First element: ” << vec.at(0) << endl ;

vec.pop_back() ; // Remove final element.
cout << “Vector size: ” << vec.size() << endl ;
cout << “Final element: ” << vec.back() << endl ;

vec.clear() ; // Remove all elements.
cout << “Vector size: ” << vec.size() << endl ;

vec.push_back(200) ; // Add an element.
cout << “Vector size: ” << vec.size() << endl ;
cout << “First element: ” << vec.front() << endl ;

l5 Save, compile, and run the program to see the output

2
2

G
e
tt

in
g

 s
ta

rt
e
d

The typedef keyword
simply creates a
nickname for a structure.

Declaring constants
Data that will not change during the execution of a program
should be stored in a constant container, rather than in a variable.
This better enables the compiler to check the code for errors – if
the program attempts to change the value stored in a constant, the
compiler will report an error and the compilation will fail.

A constant can be created for any data type by prefixing a
variable declaration with the const keyword, followed by a space.
Typically, constant names appear in uppercase to distinguish
them from (lowercase) variable names. Unlike variables, constants
must always be initialized in the declaration. For example, the
declaration of a constant for the math pi value looks like this:

const double PI = 3.1415926536 ;

The enum keyword provides a handy way to create a sequence of
integer constants in a concise manner. Optionally, the declaration
can include a name for the sequence after the enum keyword. The
constant names follow as a comma-separated list within braces.
For example, this declaration creates a sequence of constants:

enum suit { CLUBS , DIAMONDS , HEARTS , SPADES } ;

Each of the constants will, by default, have a value one greater
than the preceding constant in the list. Unless specified, the first
constant will have a value of 0, the next a value of 1, and so on. A
constant can be assigned any integer value, but the next constant
in the list will always increment it by 1.

It is occasionally convenient to define a list of enumerated
constants as a “custom data type” – by using the typedef keyword.
This can begin the enum declaration, and a chosen type name can
be added at the end of the declaration. For example, this typedef
statement creates a custom data type named “charge”:

typedef enum { NEGATIVE , POSITIVE } charge ;

Variables can then be created of the custom data type in the usual
way, which may legally be assigned any of the listed constants.
Essentially, these variables act just like an int variable – as they
store the numerical integer value the assigned constant represents.
For example, with the example above, assigning a POSITIVE
constant to a charge variable actually assigns an integer of 1.

1000000

2
3

In the PI declaration, the
* character is the C++
multiplication operator,
and the backslash
character in \” escapes
the quote mark from
recognition – so the
string does not get
terminated prematurely.

…cont’d

l1 Start a new program by specifying the C++ library classes
to include, and a namespace prefix to use
#include <iostream>
using namespace std ;

l2 Add a main function containing a final return statement
int main()
{
 // Program code goes here.
 return 0 ;
}

l3 In the main function, insert statements to declare a
constant, and output using the constant value
const double PI = 3.1415926536 ;
cout << “6\” circle circumference: “ << (PI * 6) << endl ;

l4 Next, insert statements to declare an enumerated list of
constants, and output using some of those constant values
enum
{ RED=1, YELLOW, GREEN, BROWN, BLUE, PINK, BLACK } ;
cout << “I shot a red worth: ” << RED << endl ;
cout << “Then a blue worth: ” << BLUE << endl ;
cout << “Total scored: ” << (RED + BLUE) << endl ;

l5 Now, insert statements to declare a custom data type and
output its assigned values
typedef enum { NEGATIVE , POSITIVE } charge ;
charge neutral = NEGATIVE , live = POSITIVE ;
cout << “Neutral wire: ” << neutral << endl ;
cout << “Live wire: ” << live << endl ;

l6 Save, compile, and run the program to see the output

C++

constant.cpp

2
4

G
e
tt

in
g

 s
ta

rt
e
d

Summary

• C++ is an object-oriented programming language that is an

extension of the procedural C programming language.

• The GNU C++ Compiler is available for Windows and Linux.

• Preprocessor directives are used to make functions within the

standard C++ libraries available to a program.

• Each C++ program must contain one main method as the

entry point to the program.

• Statements define the actions that the program will execute.

• It is recommended that program code should be widely

commented to make its purpose clear.

• The c++ command calls the compiler, and its -o option allows

the command to specify the name of the generated executable.

• A variable declaration specifies a data type and a chosen name

by which the value within that variable can be referenced.

• The cout function, which is part of the C++ iostream library,

writes content to the standard output console.

• An array is a fixed size variable that stores multiple items of

data in elements, which are numbered starting at 0.

• The special \0 character can be assigned to the final element of

a char array to allow it to be treated as a single text string.

• A vector variable stores multiple items of data in elements, and

can be dynamically resized.

• The value stored in an array or vector element can be

referenced using that variable’s name and its index number.

• Variable values that are never changed by the program should

be stored in a constant.

• A constant list can be automatically numbered by the enum

keyword and given a type name by the typedef keyword.

	TOC_web
	01_web_updated

