
Contents

Getting started with C 13

Introducing the C language 14
Installing a C compiler 16
Writing a C program 18
Compiling a C program 20
Understanding compilation 22
Summary 24

Storing variable values 25

Creating program variables 26
Displaying variable values 28
Inputting variable values 30
Qualifying data types 32
Using global variables 34
Registering variables 36
Converting data types 38
Creating array variables 40
Describing dimensions 42
Summary 44

Setting constant values 45

Declaring program constants 46
Enumerating constant values 48
Creating a constant type 50
Defining constants 52
Debugging definitions 54
Summary 56

Performing operations 57

Doing arithmetic 58
Assigning values 60
Comparing values 62
Assessing logic 64
Examining conditions 66

1

2

3

4

Measuring size 68
Comparing bit values 70
Flagging bits 72
Understanding precedence 74
Summary 76

Making statements 77

Testing expressions 78
Branching switches 80
Looping for a number 82
Looping while true 84
Breaking out of loops 86
Going to labels 88
Summary 90

Employing functions 91

Declaring functions 92
Supplying arguments 94
Calling recursively 96
Placing functions in headers 98
Restricting accessibility 100
Summary 102

Pointing to data 103

Accessing data via pointers 104
Doing pointer arithmetic 106
Passing pointers to functions 108
Creating arrays of pointers 110
Pointing to functions 112
Summary 114

Manipulating strings 115

Reading strings 116
Copying strings 118
Joining strings 120
Finding substrings 122
Validating strings 124
Converting strings 126
Summary 128

6

8

7

5

Building structures 129

Grouping in a structure 130
Defining type structures 132
Using pointers in structures 134
Pointing to structures 136
Passing structures to functions 138
Grouping in a union 140
Allocating memory 142
Summary 144

Producing results 145

Creating a file 146
Reading & writing characters 148
Reading & writing lines 150
Reading & writing entire files 152
Scanning filestreams 154
Reporting errors 156
Getting the date and time 158
Running a timer 160
Generating random numbers 162
Displaying a dialog box 164
Summary 166

C reference section 167

ASCII character codes 168
Input & output functions 170
Character test functions 179
String functions 180
Math functions 182
Utility functions 184
Diagnostic functions 186
Argument functions 186
Date & time functions 187
Jump functions 190
Signal functions 190
Limit constants 191
Float constants 192

9

10

11

Getting started with C++ 193

Introducing C++ 194

Installing a compiler 196

Writing your first program 198

Compiling & running programs 200

Creating variables 202
Employing variable arrays 204
Employing vector arrays 206
Declaring constants 208
Summary 210

Performing operations 211

Doing arithmetic 212
Assigning values 214
Comparing values 216
Assessing logic 218
Examining conditions 220
Establishing size 222
Setting precedence 224
Casting data types 226
Summary 228

Making statements 229

Branching with if 230
Switching branches 232
Looping for 234
Looping while 236
Declaring functions 238
Passing arguments 240
Overloading functions 242
Optimizing functions 244
Summary 246

Handling strings 247

Creating string variables 248
Getting string input 250
Solving the string problem 252
Discovering string features 254
Joining & comparing strings 256

13

14

15

12

Copying & swapping strings 258
Finding substrings 260
Replacing substrings 262
Summary 264

Reading and writing files 265

Writing a file 266
Appending to a file 268
Reading characters & lines 270
Formatting with getline 272
Manipulating input & output 274
Predicting problems 276
Recognizing exceptions 278
Handling errors 280
Summary 282

Pointing to data 283

Understanding data storage 284
Getting values with pointers 286
Doing pointer arithmetic 288
Passing pointers to functions 290
Making arrays of pointers 292
Referencing data 294
Passing references to functions 296
Comparing pointers & references 298
Summary 300

Creating classes and objects 301

Encapsulating data 302
Creating an object 304
Creating multiple objects 306
Initializing class members 308
Overloading methods 310
Inheriting class properties 312
Calling base constructors 314
Overriding base methods 316
Summary 318

18

17

16

Harnessing polymorphism 319

Pointing to classes 320
Calling a virtual method 322
Directing method calls 324
Providing capability classes 326
Making abstract data types 328
Building complex hierarchies 330
Isolating class structures 332
Employing isolated classes 334
Summary 336

Processing macros 337

Exploring compilation 338
Defining substitutes 340
Defining conditions 342
Providing alternatives 344
Guarding inclusions 346
Using macro functions 348
Building strings 350
Debugging assertions 352
Summary 354

Programming visually 355

Starting a Universal project 356
Inserting page components 358
Importing program assets 360
Designing the layout 362
Adding runtime function 364
Testing the program 366
Adjusting the interface 368
Deploying the application 370
Summary 372

Getting started with C# 373

Introducing C# 374
Installing Visual Studio 376
Exploring the IDE 378
Starting a Console project 380

21

20

22

19

Running a Console project 382
Following the rules 384
Summary 386

Storing values 387

Creating variables 388
Reading input 390
Employing arrays 392
Casting data types 394
Fixing constants 396
Summary 398

Performing operations 399

Doing arithmetic 400
Assigning values 402
Comparing values 404
Assessing logic 406
Examining conditions 408
Setting precedence 410
Summary 412

Making statements 413

Branching with if 414
Switching branches 416
Looping for 418
Looping while 420
Iterating for each 422
Summary 424

Devising methods 425

Creating function 426
Passing arguments 428
Overloading methods 430
Refactoring code 432
Summary 434

23

24

25

26

Handling strings 435

Discovering string features 436
Manipulating strings 438
Joining and comparing strings 440
Copying and swapping strings 442
Finding substrings 444
Formatting strings 446
Formatting date strings 448
Summary 450

Accessing files 451

Writing a file 452
Appending to a file 454
Reading text and lines 456
Streaming lines 458
Manipulating input and output 460
Summary 462

Solving problems 463

Detecting real-time errors 464
Fixing compile-time errors 466
Debugging code 468
Setting breakpoints 470
Catching runtime errors 472
Getting help 474
Summary 476

Creating objects 477

Encapsulating data 478
Creating multiple objects 480
Initializing class members 482
Inheriting class properties 484
Calling base constructors 486
Hiding base methods 488
Directing method calls 490
Providing capability classes 492
Employing partial classes 494
Summary 496

28

29

30

27

Controlling events 497

Starting a Forms project 498
Adding visual controls 500
Writing functional code 502
Gathering text entries 504
Ticking option boxes 506
Showing user messages 508
Calling system dialogs 510
Creating application menus 512
Making menus work 514
Importing audio resources 516
Summary 518

Building an application 519

Planning the program 520
Assigning fixed properties 522
Designing the layout 524
Setting dynamic properties 526
Adding runtime function 528
Testing the program 530
Publishing the application 532
Summary 534

Targeting devices 535

Starting a Universal project 536
Inserting page components 538
Importing program assets 540
Designing the layout 542
Adding runtime function 544
Testing the program 546
Adjusting the interface 548
Deploying the application 550
Summary 552

31

32

33

How to use this book

�e creation of this book has provided me, Mike McGrath, a welcome opportunity to update
my previous books on coding programs with the C, C++ and C# programming languages.
Examples I provide in this book demonstrate C and C++ features supported by current
compilers on both Windows and Linux operating systems, and demonstrate C# features in the
Microsoft Visual Studio development suite – all in easy steps.

Conventions in this book
In order to clarify the code listed in the steps, I have adopted certain colorization conventions.
Keywords of each language are Blue, numeric and string values are Red, programmer-specified
names are Black, comments are Green, C# classes are LightBlue and C# methods are Brown:

/* Store then output a text string value. */
char *myMessage = “Hello from C” ;
printf(myMessage) ;

// Store then output a text string value.
string myMessage = “Hello from C++!” ;
cout << myMessage ;

// Store then output a text string value.
string myMessage = “Hello from C#!” ;
Console.Write(myMessage) ;

Additionally, in order to identify each source code file described in the steps a colored icon and
file name appears in the margin alongside the steps:

C C++ C# H

hello.c header.hHellohello.cpp

Grabbing the source code
For convenience I have placed source code files from all examples featured in this book into a
single ZIP archive. To download the archive visit www.ineasysteps.com and sign in, then select
Free Resources, then select BROWSE NOW in the Source code and other book resources
section and choose All code examples for the C, C++ & C# book. �is book’s screenshots
illustrate the actual results produced by compiling and executing the listed code in each
example. If you don’t achieve the illustrated result, simply compare your code to that in the
original source code to discover where you went wrong.

I sincerely hope you enjoy discovering the powerful expressive possibilities of C, C++ and C#
programming and have as much fun with it as I did in writing this book.

Mike McGrath

Welcome to the world of C.

�is chapter demonstrates

how to create a C program

in text, then how to compile

it into executable byte form.

Introducing the C language

Installing a C compiler

Writing a C program

Compiling a C program

Understanding compilation

Summary

14

16

18

20

22

24

Getting started
with C1

1
4

G
e
tt

in
g

 s
ta

rt
e
d

 w
it

h
 C

Programs written 20
years ago in C are still
just as valid today as
they were back then.

Introducing the C language

Dennis M Ritchie,
creator of the C
programming language.

C is a compact, general-purpose computer programming language
that was originally developed by Dennis MacAlistair Ritchie
for the Unix operating system. It was first implemented on the
Digital Equipment Corporation PDP-11 computer in 1972.

�is new programming language was named “C” as it succeeded
an earlier programming language named “B” that had been
introduced around 1970.

�e Unix operating system and virtually all Unix applications
are written in the C language. However, C is not limited to a
particular platform and programs can be created on any machine
that supports C, including those running the Windows platform.

�e flexibility and portability of C made it very popular and
the language was formalized in 1989 by the American National
Standards Institute (ANSI). �e ANSI standard unambiguously
defined each aspect of C, thereby eliminating previous uncertainty
about the precise syntax of the language.

ANSI C has become the recognized standard for the C language
and is described, and demonstrated by examples, in this book.

Why learn C programming?
�e C language has been around for quite some time and has
seen the introduction of newer programming languages like Java,
C++, and C#. Many of these new languages are derived, at least in
part, from C – but are much larger in size. �e more compact C is
better to start out in programming because it’s simpler to learn.

It is easier to move on to learn the newer languages once the
principles of C programming have been grasped. For instance,
C++ is an extension of C and can be difficult to learn unless you
have mastered C programming first.

Despite the extra features available in newer languages, C remains
popular because it is versatile and efficient. It is used today on a
large number of platforms, for everything from micro-controllers
to the most advanced scientific systems. Programmers around the
world embrace C because it allows them maximum control and
efficiency in their programs.

1
5

Library Description

stdio.h

Contains input and output functions, types,
and macro definitions. This library is used by
most C programs and represents almost one
third of the entire C libraries

ctype.h Contains functions for testing characters

string.h Contains functions for manipulating strings

math.h Contains mathematical functions

stdlib.h
Contains utility functions for number
conversion, storage allocation, etc.

assert.h
Contains a function that can be used to add
diagnostics to a program

stdarg.h
Contains a function that can be used to step
through a list of function arguments

setjmp.h
Contains a function that can be used to avoid
the normal call and return sequence

signal.h
Contains functions for handling exceptional
conditions that may arise in a program

time.h
Contains functions for manipulating date and
time components

limits.h
Contains constant definitions for the size of C
data types

float.h
Contains constant definitions relating to
floating-point arithmetic

…cont’d

Standard C libraries
ANSI C defines a number of standard libraries that contain tried-
and-tested functions, which can be used in your own C programs.

�e libraries are contained in “header files” that each has a file
extension of “.h”. �e names of the standard C library header files
are listed in the table below with a description of their purpose:

The keywords listed
below have special
significance in C
programming and may
not be used for other
purposes.

C Keywords

auto int

break long

case register

char return

const short

continue signed

default sizeof

do static

double struct

else switch

enum typedef

extern union

float unsigned

for void

goto volatile

if while

1
6

G
e
tt

in
g

 s
ta

rt
e
d

 w
it

h
 C

When a C compiler is
installed the standard C
library header files (listed
on the previous page)
will also be installed.

Installing a C compiler
C programs are initially created as plain text files, saved with a “.c”
file extension. �ese can be written in any plain text editor such as
Windows’ Notepad application – no special software is needed.

In order to execute a C program it must first be “compiled” into
byte code that can be understood by the computer. A C compiler
reads the original text version of the program and translates it into
a second file, which is in machine-readable executable byte format.

If the text program contains any syntax errors these will be
reported by the compiler, and the executable file will not be built.

One of the most popular C compilers is the GNU C Compiler
(GCC) that is available free under the terms of the General
Public License (GPL). It is included with almost all distributions
of the Linux operating system. �e GNU C Compiler is used to
compile all the examples in the C and C++ sections of this book
into executable byte code.

To discover if you already have the GNU C Compiler on your
system, type gcc -v at a command prompt. If it is available the
compiler will respond with version information:

If you are using the Linux operating system and the GNU C
Compiler is not available, install it from the distribution disk or
online repository, or ask your system administrator to install it.

If you are using the Windows operating system and the GNU C
Compiler is not already available, you can download and install
the Minimalist GNU for Windows (MinGW) package, which
includes the GNU C Compiler, by following the steps opposite.

“GNU” is a recursive
acronym for “Gnu’s
Not Unix” and it is
pronounced “guh-new”.
You can find more
details at www.gnu.org

1
7

The MinGW installation
process may be subject
to change, but current
guidance can be found
at mingw.org/wiki/
Getting_Started

...cont’d

l1 With an internet connection open, launch a web browser
then navigate to sourceforge.net/projects/mingw and click
the “Download” button to get the MinGW setup installer

l2 Launch the setup installer and accept the suggested
location of C:\MinGW in the “Installation Manager” dialog

l3 Choose the “Basic” and “C++ Compiler” items then click
Installation, Apply Changes to complete the installation

�e MinGW C++ Compiler is a binary executable file located at
C:\MinGW\bin. To allow it to be accessible from any system
location this folder should now be added to the System Path:

l4 In Windows’ Control Panel, click the System icon then
select the Advanced System Settings item to launch the
“System Properties” dialog

l5 In the System Properties dialog, click the Environment
Variables button, select the Path system variable, then
click the Edit button and add the location C:\MinGW\bin

l6 Click OK to close each dialog, then open a “Command
Prompt” window and enter the command gcc -v to see the
compiler respond with version information

Because C++ is an
extension of C any C++
development tool can
also be used to compile
C programs.

1
8

G
e
tt

in
g

 s
ta

rt
e
d

 w
it

h
 C

Do not use word
processor applications
to create program code
as they store additional
formatting information
that prevents code
compilation.

Preprocessor instructions
begin with a # hash
character and must
enclose standard library
names within < >

angled brackets.

Writing a C program
In C programs the code statements to be executed are contained
within “functions”, which are defined using this syntax format:

data-type function-name () { statements-to-be-executed }

After a function has been called upon to execute the statements it
contains, it can return a value to the caller. �is value must be of
the data type specified before the function name.

A program can contain one or many functions but must always
have a function named “main”. �e main() function is the starting
point of all C programs, and the C compiler will not compile the
code unless it finds a main() function within the program.

Other functions in a program may be given any name you like
using letters, digits, and the underscore character, but the name
may not begin with a digit. Also, the C keywords, listed in the
table on the front inner cover of this book, must be avoided.

�e () parentheses that follow the function name may, optionally,
contain values to be used by that function. �ese take the form of
a comma-separated list and are known as function “arguments” or
“parameters”.

�e { } curly brackets (braces) contain the statements to be
executed whenever that function is called. Each statement must be
terminated by a semicolon, in the same way that English language
sentences must be terminated by a period/full stop.

Traditionally, the first program to attempt when learning any
programming language is that which simply generates the
message “Hello World”.

l1 Open a plain text editor, such as Notepad, then type this
line of code at the start of the page, exactly as it is listed
#include <stdio.h>

�e program begins with an instruction to the C compiler to
include information from the standard input/output stdio.h

library file. �is makes the functions contained within that
library available for use within this program. �e instruction is
more properly called a “preprocessor instruction” or “preprocessor
directive” and must always appear at the start of the page, before
the actual program code is processed.

hello.c

C

1
9

Whitespace between the
code is ignored by the
C compiler but program
code should always end
with a newline character.

…cont’d

l2 Two lines below the preprocessor instruction, add an
empty main function
int main()
{

}

�is function declaration specifies that an integer value, of the int
data type, should be returned by the function upon completion.

l3 Between the braces, insert a line of code that calls upon
one of the functions defined in the standard input/output
library – made available by the preprocessor instruction
printf (“Hello World!\n”) ;

Here the printf() function specifies a single string argument
between its parentheses. In C programming, strings must always
be enclosed within double quotes. �is string contains the text
Hello World and the \n “newline” escape sequence that moves the
print head to the left margin of the next line.

l4 Between the braces, insert a final line of code to return a
zero integer value, as required by the function declaration
return 0 ;

Traditionally, returning a value of zero after the execution of
a program indicates to the operating system that the program
executed correctly.

l5 Check that the program code looks exactly like the listing
below, then add a final newline character (hit Return after
the closing brace) and save the program as “hello.c”

#include <stdio.h>

int main()
{
 printf(“Hello World!\n”) ;
 return 0 ;
}

�e complete program in text format is now ready to be compiled
into machine-readable byte format as an executable file.

Each statement must be
terminated by a
semicolon character.

2
0

G
e
tt

in
g

 s
ta

rt
e
d

 w
it

h
 C

Compiling a C program
�e C source code files for the examples in this book are stored in
a directory created expressly for that purpose. �e directory
is named “MyPrograms” and its absolute address on Windows is
C:\MyPrograms, whereas on Linux it’s at /home/user/MyPrograms.
�e hello.c source code file, created by following the steps on
pages 18-19, is saved in this directory awaiting compilation to
produce a version in executable byte code format.

l1 At a command prompt, issue a cd command with the
path to the MyPrograms directory to navigate there

l2 At a command prompt in the MyPrograms directory, type
gcc hello.c then hit Return to compile the program

When the compilation succeeds, the compiler creates an
executable file alongside the original source code file. By default,
this file will be named a.out on Linux systems and a.exe on
Windows systems. Compiling a different C source code file in the
MyPrograms directory would now overwrite the first executable
file without warning. �is is obviously unsatisfactory so a custom
name for the executable file must be specified when compiling
hello.c. �is can be achieved by including a -o option followed by
a custom name in the compiler command.

l3 At a command prompt in the MyPrograms directory, type
gcc hello.c -o hello.exe then hit Return to compile the
program once more

On both Linux and Windows systems an executable file named
hello.exe is now created alongside the C source code file:

At a command prompt,
type gcc --help then hit
Return to see a list of all
compiler options.

2
1

If the compiler complains
that there is no new line
at the end of the file add
a carriage return to the
end of the source code,
then save and retry.

…cont’d

Windows users can even
omit the file extension
to run programs. In this
case, typing just hello is
sufficient.

l4 At a command prompt in Windows, type the executable
filename then hit Return to run the program – the text
string is output and the print head moves to the next line

Because Linux does not by default look in the current directory
for executable files, unless it is specifically directed to do so, it is
necessary to prefix the filename with ./ to execute the program.

l5 At a command prompt in Linux, type ./hello.exe then hit
Return to run the program – the text string is output and
the print head moves to the next line

You have now created, compiled, and executed the simple Hello
World program that is the starting point in C programming.
All other examples in the C section of this book will be created,
compiled, and executed in the same way.

Welcome to the exciting

world of C++ programming.

�is chapter demonstrates

how to create a simple C++

program and how to store

data within a program.

Introducing C++

Installing a compiler

Writing your first program

Compiling & running programs

Creating variables

Employing variable arrays

Employing vector arrays

Declaring constants

Summary

194

196

198

200

202

204

206

208

210

Getting started
with C++

12

1
9
4

G
e
tt

in
g

 s
ta

rt
e
d

 w
it

h
 C

+
+

Microsoft’s free Visual
Studio Community
Edition IDE is used in
this book to demonstrate
visual programming.

Introducing C++
C++ is an extension of the C programming language that was first
implemented on the UNIX operating system by Dennis Ritchie
way back in 1972. C is a flexible programming language that
remains popular today, and is used on a large number of platforms
for everything from microcontrollers to the most advanced
scientific systems.

C++ was developed by Dr. Bjarne Stroustrup between 1983 and
1985 while working at AT&T Bell Labs in New Jersey. He added
features to the original C language to produce what he called
“C with classes”. �ese classes define programming objects with
specific features that transform the procedural nature of C into
the object-oriented programming language of C++.

�e C programming language was so named as it succeeded
an earlier programming language named “B” that had been
introduced around 1970. �e name “C++” displays some
programmers’ humor because the programming ++ increment
operator denotes that C++ is an extension of the C language.

C++, like C, is not platform-dependent, so programs can be
created on any operating system. Most illustrations in this book
depict output on the Windows operating system purely because it
is the most widely used desktop platform. �e examples can also
be created on other platforms such as Linux or macOS.

Why learn C++ programming?
�e C++ language is favored by many professional programmers
because it allows them to create fast, compact programs that are
robust and portable.

Using a modern C++ Integrated Development Environment
(IDE), such as Microsoft’s Visual Studio Community Edition,
the programmer can quickly create complex applications. But to
use these tools to greatest effect, the programmer must first learn
quite a bit about the C++ language itself.

�is section of the book is an introduction to programming
with C++, giving examples of program code and its output to
demonstrate the basics of this powerful language.

A powerful
programming language
(pronounced “see plus
plus”), designed to let
you express ideas.

++

1
9
5

“ISO” is not an acronym
but is derived from
the Greek word “isos”
meaning “equal” – as in
“isometric”.

…cont’d

Should I learn C first?
Opinion is divided on the question of whether it is an advantage
to be familiar with C programming before moving on to C++.
It would seem logical to learn the original language first in order
to understand the larger extended language more readily. However,
C++ is not simply a larger version of C, as the approach to object-
oriented programming with C++ is markedly different to the
procedural nature of C. It is, therefore, arguably better to learn
C++ without previous knowledge of C to avoid confusion.

�is section of the book makes no assumption that the reader has
previous knowledge of any programming language, so it is suitable
for the beginner to programming in C++, whether they know C
or not.

If you do feel that you would benefit from learning to program in
C before moving on to C++, we recommend you try the examples
in the C section of this book before moving on to this C++
section.

Standardization of C++
As the C++ programming language gained in popularity, it
was adopted by many programmers around the world as their
programming language of choice. Some of these programmers
began to add their own extensions to the language, so it became
necessary to agree upon a precise version of C++ that could be
commonly shared internationally by all programmers.

A standard version of C++ was defined by a joint committee
of the American National Standards Institute (ANSI) and the
Industry Organization for Standardization (ISO). �is version is
sometimes known as ANSI C++, and is portable to any platform
and to any development environment.

�e examples given in this section conform to ANSI C++.
Example programs run in a console window, such as the
Command Prompt window on Windows systems or a shell
terminal window on Linux systems, to demonstrate the mechanics
of the C++ language itself. An example in Chapter 21 illustrates
how code generated automatically by a visual development tool
on the Windows platform can, once you’re familiar with the C++
language, be edited to create a graphical, windowed application.

In addition to the C
keywords listed on
page 15, C++ has the
extra keywords listed
below. All keywords
have special significance
and may not be used for
other purposes.

Extra C++ Keywords

catch private

class protected

delete public

friend template

mutable this

new throw

operator virtual

1
9
6

G
e
tt

in
g

 s
ta

rt
e
d

 w
it

h
 C

+
+

Installing a compiler
C++ programs are initially created as plain text files, saved with
the file extension of “.cpp”. �ese can be written in any text editor,
such as Windows’ Notepad application or the Vi editor on Linux.

In order to execute a C++ program, it must first be “compiled”
into byte code that can be understood by the computer. A C++
compiler reads the text version of the program and translates it
into a second file – in machine-readable, executable format.

Should the text program contain any syntax errors, these will be
reported by the compiler and the executable file will not be built.

If you are using the Windows platform and have a C++
Integrated Development Environment (IDE) installed, then you
will already have a C++ compiler available, as the compiler is
an integral part of the visual IDE. �e excellent, free Microsoft
Visual C++ Express IDE provides an editor window, where the
program code can be written, and buttons to compile and execute
the program. Visual IDEs can, however, seem unwieldy when
starting out with C++ because they always create a large number
of “project” files that are used by advanced programs.

�e popular free GNU Compiler Collection, which includes a
C Compiler, is included with most distributions of the Linux
operating system. �e GNU C++ Compiler is also available for
Windows platforms and is used to compile examples throughout
the C and C++ sections of this book.

To discover if you already have the GNU C++ Compiler on your
system, type c++ -v at a command prompt then hit Return. If it’s
available, the compiler will respond with version information. If
you are using the Linux platform and the GNU C++ Compiler
is not available on your computer, install it from the distribution
disc, download it from the GNU website, or ask your system
administrator to install it.

�e GNU (pronounced “guh-new”) Project was launched back in
1984 to develop a complete free Unix-like operating system. Part
of GNU is “Minimalist GNU for Windows” (MinGW). MinGW
includes the GNU C++ Compiler that can be used on Windows
systems to create executable C++ programs. Windows users can
download and install the GNU C++ Compiler by following the
instructions on the opposite page.

The GNU C++ compiler
is available free under
the terms and conditions
of the General Public
License (GPL) that can be
found online at gnu.org/
copyleft/gpl.html

To open a Windows
Command Prompt, press
the Windows + R keys
to launch a Run dialog,
then type cmd into the
dialog and hit Enter.

R

1
9
7

...cont’d

l1 With an internet connection, launch a web browser then
navigate to osdn.net/projects/mingw and click the link
to download the MinGW installer mingw-get-setup.exe

l2 Launch the installer setup and accept the suggested
location of C:\MinGW in the “Installation Manager” dialog

l3 Check the Basic MinGW and C++ Compiler items,
then click Installation, Apply Changes, Apply to install

�e MinGW C++ Compiler is a binary executable file located at
C:\MinGW\bin. To allow it to be accessible from any system
location, this folder should now be added to the System Path:

l4 Open Windows’ “System Properties” dialog, then select
the Advanced tab and click the Environment Variables
button – to open the “Environment Variables” dialog

l5 Select the Path system variable, then click the Edit
button and add the location C:\MinGW\bin;

l6 Click OK to close each dialog, then open a Command
Prompt window and enter the command c++. If the
installation is successful, the compiler should respond that
you have not specified any input files for compilation:

To open a System
Properties dialog, press
the Windows + R keys
to launch a Run dialog,
then type sysdm.cpl into
the dialog and hit Enter.

R

1
9
8

G
e
tt

in
g

 s
ta

rt
e
d

 w
it

h
 C

+
+

After typing the final
closing } brace of the
main method, always hit
Return to add a newline
character – your compiler
may insist that a source
file should end with a
newline character.

Comments throughout
this book are shown in
green – to differentiate
them from other code.

Writing your first program
Follow these steps, copying the code exactly as it is listed, to
create a simple C++ program that will output the traditional first
program greeting:

l1 Open a plain text editor, such as Windows’ Notepad, then
type these “preprocessor directives”
#include <iostream>
using namespace std ;

l2 A few lines below the preprocessor directives, add a
“comment” describing the program
// A C++ Program to output a greeting.

l3 Below the comment, add a “main function” declaration to
contain the program statements
int main()
{

}

l4 Between the curly brackets (braces) of the main function,
insert this output “statement”
cout << “Hello World!” << endl ;

l5 Next, insert a final “return” statement in the main function
return 0 ;

l6 Save the program to any convenient location as
“hello.cpp” – the complete program should look like this:

C++

hello.cpp

1
9
9

The C++ compiler also
supports multiple-line
C-style comments
between /* and */
– but these should
only ever be used in
C++ programming
to “comment-out”
sections of code when
debugging.

�e separate parts of the program code on the opposite page can
be examined individually to understand each part more clearly:

• Preprocessor Directives – these are processed by the compiler
before the program code, so must always appear at the start of
the page. Here, the #include directive instructs the compiler
to use the standard C++ input/output library named iostream,
specifying the library name between < > angled brackets. �e
next line is the “using directive” that allows functions in the
specified namespace to be used without their namespace prefix.
Functions of the iostream library are within the std namespace
– so this using directive allows functions such as
std::cout and std::endl to be simply written as cout and endl.

• Comments – these should be used to make the code more
easily understood by others, and by yourself when revisiting the
code later. In C++ programming, everything on a single line
after a // double-slash is ignored by the compiler.

• Main function – this is the mandatory entry point of every
C++ program. Programs may contain many functions, but they
must always contain one named main, otherwise the compiler
will not compile the program. Optionally, the parentheses
after the function name may specify a comma-separated list
of “argument” values to be used by that function. Following
execution, the function must return a value to the operating
system of the data type specified in its declaration – in this
case, an int (integer) value.

• Statements – these are the actions that the program will
execute when it runs. Each statement must be terminated by
a semicolon, in the same way that English language sentences
must be terminated by a period (full stop). Here, the first
statement calls upon the cout library function to output text
and an endl carriage return. �ese are directed to standard
output by the << output stream operator. Notice that text
strings in C++ must always be enclosed within double quotes.
�e final statement employs the C++ return keyword to return
a zero integer value to the operating system – as required by
the main function declaration. Traditionally, returning a zero
value indicates that the program executed successfully.

…cont’d

Notice how the program
code is formatted using
spacing and indentation
(collectively known
as whitespace) to
improve readability. All
whitespace is ignored by
the C++ compiler.

2
0
0

G
e
tt

in
g

 s
ta

rt
e
d

 w
it

h
 C

+
+

You can see the compiler
version number with the
command
c++ --version and
display all its options
with c++ --help

The command c++ is an
alias for the GNU C++
Compiler – the command
g++ can also be used.

Compiling & running programs
�e C++ source code files for the examples in this book are stored
in a directory created expressly for that purpose. �e directory is
named “MyPrograms” – its absolute address on a Windows system
is C:\MyPrograms and on Linux it’s /home/user/MyPrograms. You
can recreate this directory to store programs awaiting compilation:

l1 Move the “hello.cpp” program source code file, created on
page 198, to the “MyPrograms” directory on your system

l2 At a command prompt, use the “cd” command to navigate
to the “MyPrograms” directory

l3 Enter a command to attempt to compile the program
c++ hello.cpp

When the attempt succeeds, the compiler creates an executable
file alongside the original source code file. By default, the
executable file is named a.exe on Windows systems and a.out
on Linux. Compiling a different source code file in the same
directory would now overwrite the first executable file without
warning. �is is obviously undesirable, so a custom name for the
executable file should be specified when compiling programs,
using the compiler’s -o option in the compile command.

l4 Enter a command to compile the program, creating an
executable file named “hello.exe” alongside the source file
c++ hello.cpp -o hello.exe

Welcome to the exciting

world of C# programming.

�is chapter introduces the

Visual Studio Integrated

Development Environment

and shows you how to create

a real Windows application.

Introducing C#

Installing Visual Studio

Exploring the IDE

Starting a Console project

Running a Console project

Following the rules

Summary

374

376

378

380

382

384

386

Getting started
with C#

22

3
7
4

G
e
tt

in
g

 s
ta

rt
e
d

 w
it

h
 C

#

Introducing C#

#

�e introduction of the Microsoft .NET framework at the
Professional Developers Conference in July 2000 also saw
Microsoft introduce a new programming language called C#
(pronounced “see-sharp”). �e name was inspired by musical
notation where a # sharp symbol indicates that a written note
should be a semitone higher in pitch. �is notion is similar to the
naming of the C++ programming language where the ++ symbol
indicates that a written value should be incremented by 1.

• C# is designed to be a simple, modern, general-purpose,
object-oriented programming language, borrowing key
concepts from several other languages – most notably the
Java programming language. Consequently, everything in C#
is a class “object” with “properties” and “methods” that can be
employed by a program.

• C# is an elegant and “type-safe” programming language that
enables developers to build a variety of secure and robust
applications. You can use C# to create Windows client
applications, XML web services, distributed components,
client-server applications, database applications, and much,
much more.

• C# is specifically designed to utilize the proven functionality
built into the .NET framework “class libraries”. Windows
applications written in C# therefore require the Microsoft
.NET framework to be installed on the computer running the
application – typically, an integral component of the system.

�e Microsoft .NET Framework
Each version of the Microsoft .NET framework includes a unified
set of class libraries and a virtual execution system called the
Common Language Runtime (CLR). �e CLR allows the C#
language and the class libraries to work together seamlessly.

To create an executable program, source code written in the C#
language is compiled by the C# Compiler into Intermediate
Language (IL) code. �is is stored on disk, together with other
program resources such as images, in an “assembly”. Typically, the
assembly will have a file extension of .exe or .dll. Each assembly
contains a “manifest” that provides information about that
program’s security requirements.

3
7
5

Just-In-Time compilation
is also known as
“Dynamic Translation”.

Just-In-Time compilation
occurs during program
execution, rather than
prior to its execution.

...cont’d

Operating System Execution

 Common Language Runtime (CLR)
Security/JIT Compiler/Garbage Collection

Microsoft .NET Framework

C# Compiler

Assembly (IL Code & Resources)

C# Source File(s)
Resources &
 References

Visual Studio C# Project

When a C# program is executed, the assembly is loaded into
the Common Language Runtime (CLR), and the security
requirements specified in its assembly manifest are examined.
When the security requirements are satisfied, the CLR
performs Just-In-Time (JIT) compilation of the IL code into
native machine instructions. �e CLR then performs “garbage
collection”, exception handling, and resource management tasks
before calling upon the operating system to execute the program:

As language interoperability is a key feature of the Microsoft
.NET framework, the IL code generated by the C# Compiler
can interact with code generated by the .NET versions of other
languages such as Visual Basic and Visual C++. �e examples
throughout the C# section of this book demonstrate Visual C#
program code.

3
7
6

G
e
tt

in
g

 s
ta

rt
e
d

 w
it

h
 C

#

Installing Visual Studio
In order to create Windows applications with the C#
programming language, you will first need to install a Visual
Studio Integrated Development Environment (IDE).

Microsoft Visual Studio is the professional development tool that
provides a fully Integrated Development Environment for Visual
Basic, Visual C++, Visual J#, and Visual C#. Within its IDE, code
can be written in Visual Basic, C++, J#, or the C# programming
language to create Windows applications.

Visual Studio Community edition is a streamlined version
of Visual Studio, specially created for those people learning
programming. It has a simplified user interface and omits
advanced features of the professional edition to avoid confusion.
C# code can be written within the Code Editor of either version
of the Visual Studio IDE to create Windows applications.

Both Visual Studio and Visual Studio Community provide
an IDE for C# programming but, unlike the fully-featured
Visual Studio product, the Visual Studio Community edition is
completely free and can be installed on any system meeting the
following minimum requirements:

Component Requirement

Operating system

Windows 11
Windows 10 (version 1909 or higher)
Windows Server 2016 or 2019
*Must be the 64-bit version of any of
the above the operating systems.

CPU (processor) 1.8 GHz or faster, 64-bit processor

RAM (memory) 4 GB (16 GB recommended)

HDD (hard drive) Up to 210 GB available space

Video Card
Minimum resolution of 1366 x 768
Optimum resolution of 1920 x 1080

�e Visual Studio Community edition is used throughout the C#
section of this book to demonstrate programming with the C#
language, but the examples can also be recreated in Visual Studio.
Follow the steps opposite to install the Visual Studio Community
edition.

3
7
7

Choosing a different
destination folder may
require other paths to
be adjusted later – it’s
simpler to just accept the
suggested default.

Both Visual Studio and
Visual Studio Installer
items get added to your
All Apps menu. You
can re-run the installer
at a later date to add or
remove features.

...cont’d

l1 Open your web browser and navigate to the Visual Studio
download page – at the time of writing, this can be found
at visualstudio.microsoft.com/downloads

l2 Click the button in the Community edition section to
download a VisualStudioSetup.exe setup file

l3 Click on the setup file icon to begin setup and to
run the Visual Studio Installer

l4 Accept the suggested installation location, then click Next

l5 Check the two C# Installer options shown below

l6 Click the Install button at the bottom-right of the
installer to begin the download and installation process

3
7
8

G
e
tt

in
g

 s
ta

rt
e
d

 w
it

h
 C

#

Exploring the IDE

l1 Go to your All apps menu, then select the Visual Studio
2022 menu item added there by the installer:

l4 For now, just click the Continue without code link to
launch the Visual Studio application

�e Visual Studio Integrated Development Environment (IDE)
appears, from which you have instant access to everything needed
to produce complete Windows applications – from here, you can
create exciting visual interfaces, enter code, compile and execute
applications, debug errors, and much more.

l2 Sign in with your Microsoft account, or register an
account then sign in, to continue

l3 See a default Start Page appear where recent projects will
be listed alongside several “Get started” options

The first time Visual
Studio starts it takes
a few minutes as it
performs configuration
routines.

In the future your recent
projects will be listed
here so you can easily
reopen them.

3
7
9

...cont’d

• Menu Bar – Where you can select actions to perform on all

your project files and to access Help. When a project is open,

extra menus of Project and Build are shown in addition to the

default menu selection of File, Edit, View, Git, Project, Debug,

Analyze, Tools, Extensions, Window, and Help.

• Toolbar – Where you can perform the most popular menu

actions with a single click on their associated shortcut icons.

• Toolbox – Where you can select visual elements to add to

a project. Click View, Toolbox or a side bar button to see its

contents. When a project is open, “controls” such as Button,

Label, CheckBox, RadioButton, and TextBox are shown here.

• Solution Explorer – Where you can see at a glance all the files

and resource components contained within an open project.

• Status Bar – Where you can read the state of the current

activity being undertaken. When building an application, a

“Build started” message is displayed here, changing to a

“Build succeeded” or “Build failed” message upon completion.

Visual Studio IDE components
�e Visual Studio IDE initially provides these standard features:

Menu Bar

Toolbar

Toolbox

Solution Explorer

Status Bar

The IDE may have a
Light color theme by
default. To change the
color theme, choose
the Tools, Options
menu then select
Environment, General,
Color Theme and select
Blue or Dark theme, or
select the Use system

setting option.

Notifications

Start Button

3
8
0

G
e
tt

in
g

 s
ta

rt
e
d

 w
it

h
 C

#

Starting a Console project

l1 On the Menu Bar, click File, New, Project... or press
Ctrl + Shift + N, to open the “Create a new project” dialog

Visual Studio now creates your new project and loads it into the
IDE. A Code Editor window appears, containing default skeleton
project code generated by Visual Studio.

l4 Drag the Code Editor window tab to undock the Code
Editor window from the Visual Studio IDE frame

The default location for
Visual Studio projects
is a C:\Users\username\

source\repos directory.

C#

GettingStarted

The source code of all
examples in this book
is available for free
download at www.
ineasysteps.com/
downloads

l2 In the “Create a new project” dialog box, select the
C# Console App item (for .NET Core on Windows,
Linux and macOS), then click Next

If the Code Editor
window does not open
automatically, click the
Program.cs file icon
in Solution Explorer to
open the Code Editor.

l3 In the next dialog, enter a project name plus location and
click the Create button, then select the .NET 6.0 (Long-
term support) framework and click Create again

3
8
1

...cont’d

�e undocked window title displays the project name, and
the tab displays the file name of the code as “Program.cs”.

You can drag the title
bar of any window to
undock that window
from the Visual Studio
IDE frame. When
dragging, you can drop
a window on the “guide
diamond” (shown below)
to dock the window in
your preferred position.

�e Code Editor window is where you write C# code to create
an application. �e Visual Studio IDE has now gathered all the
resources needed to build a default Console application.

�e top-left drop-down box indicates the name of the project to
which this file belongs – in this case, it’s “GettingStarted”.

l5 Select the View, Solution
Explorer menu to open a
Solution Explorer window,
to discover all the items
in your project – click the
arrow buttons to expand or
collapse categories

l6 Select
the View,
Properties
Window
menu to open
a Properties
window, then
select any item
in the Solution Explorer window to see its properties
then appear in the Properties window

3
8
2

G
e
tt

in
g

 s
ta

rt
e
d

 w
it

h
 C

#

You will discover how
to use breakpoints in
Chapter 29 (Solving
problems).

Running a Console project
C#

GettingStarted
(continued)

In order to run a program, Visual Studio will first build the app
then execute the app. �is can be done in one of two modes:

• Debug Mode – �e program is compiled with symbolic
debugging information included in the program files. �is
allows Visual Studio’s built-in debugger to find bugs, but has
optimization of Intermediate Language (IL) code disabled.

• Release Mode – �e program is compiled without
debugging information included in the program files, but has
optimization of Intermediate Language (IL) code enabled.

During program development it is generally preferable to run your
programs in Debug mode. �ere is an option to run a program in
Debug mode without debugging, but it’s seldom desirable as this
executes the program without the possibility of stepping through
the code to breakpoints.

l1 On the toolbar, set the solution configuration to Debug

l2 Now, click the green arrow “Start” button to build and run
the program with debugging enabled

Alternatively, select
Debug, Start
Debugging to build
and run a program with
debugging enabled.

l3 See the app display a traditional greeting in the Console

l4 Press any keyboard key to close the Console window, and
return to the Visual Studio Code Editor

3
8
3

...cont’d

To edit the default
Console window colors
and font, right-click its
window Titlebar and
choose Properties. For
clarity, all other Console
window screenshots in
the C# section of this
book feature Lucida
Console 14-pixel Font
in black Screen Text
on a white Screen
Background.

Code analysis
Examination of the code helps to understand what is happening:

• �e first line is a comment. Anything on a line after // is
ignored by the compiler. By default, comments are colored
green in the Visual Studio Code Editor. In this case, the
comment includes a hyperlink that will open a page in your
web browser. �e page explains how the .NET 6 framework
uses new templates to simplify the creation of Console apps.

• Console.WriteLine(“Hello, World!”) ; �is is a statement
that calls upon the WriteLine() method of the Console class
to output the text string enclosed in quote marks within its
parentheses. Notice that the statement is terminated by a ;
semicolon character. By default, class names are colored light
blue, method names are colored brown, strings are colored
red, and other code here is colored black.

l5 Add another line to the code, as a statement to output a
second text string containing your own name such as...
Console.WriteLine(“Good afternoon, Mike!”) ;

l6 Run the modified code in Debug mode to see the result

New in .NET 6 are
code templates, which
the compiler uses to
automatically generate
namespace, class, and
method elements when
building a Console app.

	TOC C, C++ & C# without Index for ebook edition_web
	01_C_web 13-21
	12_01_C++_web 193-200
	22_01_C#_web 373-383

