
Contents

Getting started 7

Introducing Excel VBA 8
Recording a macro 10
Viewing macro code 12
Testing a macro 14
Editing macro code 15
Referencing relatives 16
Saving macros 18
Trusting macros 20
Summary 22

Writing macros 23

Exploring the Editor 24
Creating a macro 26
Adding toolbar buttons 28
Adding Form Controls 30
Recognizing hierarchy 32
Identifying a range 34
Addressing cells 36
Summary 38

Storing values 39

Creating variables 40
Defining data types 42
Managing strings 44
Producing arrays 46
Describing dimensions 48
Representing objects 50
Declaring constants 52
Summary 54

1

2

3

Performing operations 55

Doing arithmetic 56
Making comparisons 58
Assessing logic 60
Joining strings 62
Understanding precedence 64
Summary 66

Making statements 67

Choosing a branch 68
Branching alternatives 70
Selecting branches 72
Performing loops 74
Looping while true 76
Breaking from loops 78
Iterating for each 80
Including with 82
Summary 84

Executing procedures 85

Calling subroutines 86
Modifying scope 88
Passing arguments 90
Adding modules 92
Fixing values 94
Debugging code 96
Handling errors 98
Summary 100

5

6

4

Employing functions 101

Defining a function 102
Calling a function 104
Scoping a function 106
Passing array arguments 108
Stating options 110
Returning errors 112
Debugging functions 114
Describing functions 116
Summary 118

Recognizing events 119

Creating event-handlers 120
Opening workbook events 122
Changing workbook events 124
Closing workbook events 126
Spotting worksheet changes 128
Catching worksheet clicks 130
Listening for keystrokes 132
Observing the time 134
Summary 136

Opening dialogs 137

Acquiring input 138
Showing messages 140
Importing files 142
Saving files 144
Producing data forms 146
Executing Ribbon commands 148
Summary 150

8

9

7

Providing UserForm dialogs 151

Inserting a UserForm 152
Adding controls 154
Comparing control types 156
Adjusting properties 158
Naming controls 160
Displaying forms 162
Handling form events 164
Managing lists 166
Summary 168

Developing apps 169

Ignoring modes 170
Indicating progress 172
Controlling MultiPages 174
Tabbing data pages 176
Showing chart info 178
Creating Add-ins 180
Installing Add-ins 182
Adding Ribbon buttons 184
Summary 186

Index 187

10

11

Welcome to the exciting

world of Excel VBA (Visual

Basic for Applications). �is

chapter demonstrates how

to create a VBA macro for

Excel workbooks.

Introducing Excel VBA

Recording a macro

Viewing macro code

Testing a macro

Editing macro code

Referencing relatives

Saving macros

Trusting macros

Summary

8

10

12

14

15

16

18

20

22

Getting started1

8
G

e
tt

in
g

 s
ta

rt
e
d

If you’re just starting out
with Excel, please refer
to our companion book
Microsoft Excel in easy
steps.

Introducing Excel VBA
Visual Basic for Applications (VBA) is the programming language
that is built into the Excel spreadsheet application and other
Microsoft Office applications. It extends Excel so it can perform
tasks that can’t be done with standard Excel tools, and provides
the capability to automate many routine tasks.

�e examples in this book assume the reader is an experienced
Excel user who can accomplish these fundamental operations:

• Create workbooks and insert worksheets

• Navigate around a workbook and worksheet

• Use the Excel Ribbon interface

• Name cells and ranges

• Use the Excel worksheet functions

All examples are demonstrated using Excel in Microsoft 365,
although most examples are applicable to earlier versions of Excel.

Enabling VBA
Before you can get started using the capabilities of VBA, it must
first be enabled in your Excel installation:

l1 Launch Excel, then choose to open a Blank workbook

l2 When the workbook opens,
choose the File item on the
Excel Ribbon

All the examples in this
book are available for
free download at
www.ineasysteps.com/
downloads/

9
...cont’d

l3 Next, select the Options item – to
open the “Excel Options” dialog box

l4 In the Excel Options dialog, choose
the Customize Ribbon item on the
left-hand pane

l5 Now, check the Developer option box in the right-
hand pane

l6 Click the OK button to apply the change and to close
the Excel Options dialog box

l7 See that a Developer tab has been added to the Ribbon

l8 Choose the Developer tab to see a Visual Basic button in
the Ribbon’s “Code” group – VBA is now enabled

You can also open the
Excel Options dialog box
by pressing the Alt + F
+ T keys.

In the Excel Options
dialog you can click
the + button beside
the Developer item
to reveal the groups it
contains. If you right-
click on any group, a
context menu offers you
options to modify the
groups that will appear
on the Developer tab.

1
0

G
e
tt

in
g

 s
ta

rt
e
d

A macro is a set
of programming
instructions stored in
VBA code.

Recording a macro
Having enabled VBA, as described on pages 8-9, you can create a
simple app by recording a “macro” to store actions:

l1 Open a blank workbook in Excel,
then select worksheet cell A1

l2 On the Developer tab, click
the Record Macro button in
the Code group to launch the
“Record Macro” dialog box

l3 Type a name of your choice in the dialog’s Macro name
field – for example, type “BookTitle”

l4 Next, type a letter in
the dialog’s Shortcut
key field – for
example, type “T”, to
create a Ctrl + Shift
+ T shortcut

l5 Now, choose to
store the macro
in �is Workbook

l6 Click the OK button to close the Record Macro dialog,
and to begin recording actions

l7 Type the title of this book into previously selected cell
A1, then hit Enter – to enter the title text into the cell

In the Record Macro
dialog you can add a
Description of what the
macro will perform.

1
1

The Record Macro
button changes to
Stop Recording when
recording is taking place.

...cont’d

l8 Notice that focus has
moved, so cell A2 is now
automatically selected after
you hit the Enter key

l9 Now, click the Stop
Recording button in the
Code group on the Developer tab – to stop recording
your actions

l10 Click the Macros button in
the Code group to launch
the “Macro” dialog box and
choose to see macros in
�is Workbook

l11 Select the
“BookTitle”
macro, then click
the Run button
to execute the
macro and see
the book title
text appear in
the automatically
selected cell A2

You can also use the
shortcut keys Alt +
F8 to open the Macro
dialog box at any time.

1
2

G
e
tt

in
g

 s
ta

rt
e
d

You can also use the
shortcut keys Alt + F11
to open the Visual Basic
Editor at any time.

The Project Explorer
window may already be
visible when the Visual
Basic Editor opens, and
the project may already
be expanded, but it
is useful to practice
opening and closing
these items to become
familiar with the Visual
Basic Editor interface.

Viewing macro code
Having created a macro, as described on pages 10-11, the VBA
programming instructions that were written when the macro was
created can be viewed in the Visual Basic Editor:

l1 On Excel’s Developer tab, click the Visual Basic button
in the Code group – to launch the Visual Basic Editor

l2 In the Visual Basic Editor, select View, Project Explorer
– to open the “Project Explorer” window

l3 In Project Explorer, click the
+ button beside the Book1
project to expand its contents

1
3

...cont’d

Code analysis

• Sub BookTitle () – �is declares the beginning of a
“subroutine” (Sub) with the same name you gave to the macro
(BookTitle) and was written when it began recording.

• ‘ BookTitle Macro – �is is a comment, confirming that this
subroutine is for a macro of your chosen name.

• ‘ Keyboard Shortcut: Ctrl+Shift+T – �is is another comment,
describing the shortcut keys you chose to run this macro.

• ActiveCell.FormulaR1C1 = “Excel VBA in easy steps” – �is is
an instruction that was written when you typed the book title
into the cell and hit the Enter key.

• Range(“A2”).Select – �is is an instruction that was written as
focus moved to cell A2 after you hit the Enter key.

• End Sub – �is denotes the end of this macro subroutine, and
was written when you stopped recording.

�e color used in the code is the default syntax highlighting that
the Visual Basic Editor automatically applies for easier reading.
Blue is applied to “keywords” that have special meaning in Visual
Basic code, and green is applied to comments describing the code.
For clarity, the same color syntax highlighting is also used in the
example code listed in the steps provided throughout this book.

l4 Now, in Project Explorer, double-click the Module1 node
within the “Modules” folder – to see the macro VBA code

The () parentheses that
appear in the first line
of code can contain a
parameter list. This is
demonstrated later, on
page 90.

All lines that begin with
an apostrophe are simply
ignored when the macro
is executed.

1
4

G
e
tt

in
g

 s
ta

rt
e
d

If you try to specify
a shortcut key that is
already designated for
use by another macro
in the same workbook,
a dialog will appear
requesting you to specify
an alternative shortcut
key – so you cannot
accidentally duplicate.

Testing a macro
Before starting to record the macro, as described on page 10,
shortcut keys were specified in the Record Macro dialog and these
can now be tested to ensure they can run the macro:

l1 With the Visual Basic Editor open, select View,
Microsoft Excel, or click the button on the toolbar to
return to the Excel interface

l2 Next, select empty cell A3You can use the shortcut
keys Alt + F11 to close
the Visual Basic Editor.

l3 Now, press the Ctrl + Shift + T shortcut keys to test run
the macro – the book title should appear in the cell you
selected and the focus returned to cell A2 as instructed
in code

It is important to remember that cell A1 was selected before the
macro recording began, otherwise the action of selecting that cell
would be written as an instruction in the macro. �is would mean
the book title could only be written into cell A1 each time the
macro was run.

1
5

Although the lines of
VBA code are executed
from top to bottom, their
order is unimportant in
this macro – the cell’s
styling can be set before
or after its content is
added.

Editing macro code
Now you are sure the macro can be run by both the Run button
in the Macro dialog, and by the Ctrl + Shift + T shortcut keys
you specified, but you probably will not need it to return focus
to cell A2 after each run. �e code can be edited to remove the
instruction to return focus, and also to style the text it writes:

l1 On Excel’s Developer tab, click the Visual Basic button
in the Code group to launch the Visual Basic Editor

l2 In Project Explorer, double-click the project’s Module1
item to see the macro VBA code

l3 Next, delete this instruction line that returns focus
Range(“A2”).Select

l4 Now, add these instructions anywhere within the
subroutine to style the text in bold red
ActiveCell.Font.Bold = True
ActiveCell.Font.Color = vbRed

l5 Click
the
Save
button

l6 Return to Excel and select any cell – press the Ctrl +
Shift + T shortcut keys to run this edited macro

As you type instructions
a pop-up box will often
appear when you type a
period/full stop, to offer
a list of suggestions from
which you can choose
an item.

The eight Visual Basic
color constants are
vbRed, vbGreen, vbBlue,
vbYellow, vbMagenta,
vbCyan, vbBlack, and
vbWhite – see pages
52-53 for more on
constants.

1
6

G
e
tt

in
g

 s
ta

rt
e
d

Shortcut keys might also
be specified to run these
macros – for example,
Ctrl + Shift + A
(Absolute) and
Ctrl + Shift + R
(Relative).

Referencing relatives
Excel has two macro recording modes that differ in the way they
refer to cells on the worksheet. �e default recording mode, used
in the previous examples, refers to cells by their “absolute” position
on the worksheet – cell A1, A2, A3, and so on. �e alternative
recording mode refers to cell locations by their position on the
worksheet “relative” to other cells – offset by a specified number
of rows and columns from another cell. �e difference between
the two recording modes is important, as macros that use absolute
referencing always reference the same cell locations regardless
of the currently selected cell, whereas macros that use relative
referencing reference cells at locations offset from the selected cell:

l1 Clear all worksheet cells, then select cell A1 and begin a
macro named “AbsoluteBookTitle”

l2 Type this
book’s topic,
then select cell
B2 and type
this book’s
series name

l3 Hit Enter,
then click Stop
Recording

l4 Clear all
worksheet
cells, then
select cell A1
and click the
Use Relative
References
button in the
Code group

l5 Begin a macro named “RelativeBookTitle”, then repeat
Steps 2 and 3 to complete the macro

Macros recorded using
relative referencing are
often more flexible, as
they can be applied
anywhere in a workbook.

1
7

Empty comment lines
are removed from this
screenshot to save space.

...cont’d

l6 Click the Visual Basic button to open the Visual Basic
Editor, then compare the VBA code of each macro

When selecting cell B2, absolute referencing refers to it by name,
but relative referencing refers to it as offset by 1 row and 1
column from the initially selected cell. To compare performance:

l7 Clear all cells, then select cell A2 and run the macro
named “AbsoluteBookTitle”

l8 Again, clear all cells, then once more select cell A2 and
run the macro named “RelativeBookTitle”

In this example, the
macro using absolute
referencing writes the
book series name in the
cell named B2, whereas
the macro using relative
referencing writes the
book series name in cell
B3 – as it is offset by 1
row and 1 column from
the initially selected cell.

1
8

G
e
tt

in
g

 s
ta

rt
e
d

Click the button to
reveal a drop-down list
of file types from which
to choose.

Choose a folder location
where you want to save
workbooks. Here, it’s
a folder named “Excel
Workbooks” within the
system’s Documents
folder.

Saving macros
Since Excel 2007, workbook files have had the standard file
extension of “.xlsx”, but these cannot contain Visual Basic
macros. In order to save an Excel workbook and its macros, it
must instead be saved as an Excel Macro-Enabled Workbook
that is given a file extension of “.xlsm”. If you save a workbook
containing a macro as a standard “.xlsx” file, all macro code will be
lost – but Excel will warn you before this happens:

l1 In Excel, select File, Save As, then type “BookTitle” as
the workbook name and click the Save button

l2 If the workbook contains a macro, a warning dialog will
appear asking if you wish to proceed – unless you want to
save the workbook without its macro, click the No button

l3 Change the file type to Excel Macro-Enabled Workbook,
then click the Save button to save the complete workbook

1
9

...cont’d

Although most macros are intended for use in a specific
workbook, general-purpose macros that may be useful in many
workbooks can be saved in the special Personal Macro Workbook.
�is is a file named “personal.xlsb” that automatically opens in the
background when Excel starts up – so the macros it contains are
available to any other workbook. To save a macro in the Personal
Macro Workbook, simply choose that option in the Record Macro
dialog before you begin recording a macro:

l1 Click the Record
Macro button
and call the macro
“Name”, then choose
the Personal Macro
Workbook option

l2 Type your name
into the selected
cell, then select Stop
Recording and close Excel

l3 A dialog will appear
asking if you wish to
save changes made to
the Personal Macro
Workbook – click the
Save button to retain the macro

l4 Next, start Excel
and begin a new
Blank workbook,
then click the
Macros button in
the Code group

l5 Now, choose the
saved “Name”
macro and click
Run to write your
name into a cell

The Personal Macro
Workbook runs in a
hidden window that you
can reveal by selecting
the View tab, then
choosing Unhide in the
Window group.

2
0

G
e
tt

in
g

 s
ta

rt
e
d

Macros have been used
to distribute malware
– be wary of enabling
macros in a workbook
from an unknown
source.

Trusting macros
Excel Workbook files (.xlsx) are regarded as safe, as they merely
contain data, whereas Excel Macro-Enabled Workbook files
(.xlsm) may pose a potential threat, as they are executable.
Recognizing this, Excel automatically disables the macros in an
Excel Macro-Enabled Workbook until the user consents to trust
their safety. On opening a workbook that contains macros, a
security warning offers the user the option to enable macros. If
the user consents to enable macros, the workbook is regarded as
trustworthy and the security warning will never appear again.

As an alternative to enabling macros in individual workbooks, a
folder can be nominated as a trusted location. �is then allows
Excel Macro-Enabled Workbook files to be placed inside that
folder and run without security restrictions:

l1 Navigate to the folder containing an Excel Macro-
Enabled Workbook, and open it in Excel

l2 Click the Enable Content button if you consent to
permanently enable macros in this workbook

Both .xlsx and .xlsm file
types store workbook
data in XML format.
Excel also supports
.xlsb files that store
workbook data in binary
format. This is favored
by some users, but
workbook content is
more accessible to other
software when stored as
XML data.

2
1

You can also use
Trusted Documents to
nominate a workbook
so it will run without
security restrictions.

All workbooks in
Trusted Locations will
run without security
restrictions.

...cont’d

l3 Next, click the Macro
Security button in the
Code group to open the
“Trust Center” dialog box

l4 In the Trust Center dialog, select the
Trusted Locations item in the left-
hand panel

l5 Now, click the Add new
location... button to open
the “Microsoft Office
Trusted Location” dialog

l6 Browse to
select the
folder you
wish to
nominate
as a trusted
location
for Excel
Macro-
Enabled
Workbooks

l7 Click the OK button to see your nominated folder added
to the list of Trusted Locations in the Trust Center

2
2

G
e
tt

in
g

 s
ta

rt
e
d

Summary

• VBA (Visual Basic for Applications) is the programming
language built into Excel that extends its capabilities beyond
the standard Excel tools.

• �e Excel Developer option enables VBA and adds a
Developer tab to the Excel Ribbon.

• �e Code group on the Developer tab contains a Record
Macro button with which to create VBA macros.

• �e Macros button in the Code group lists available macros.

• �e Visual Basic button in the Code group opens the Visual
Basic Editor to inspect macro programming instructions.

• Macro subroutines are stored in a project’s Module1 node.

• Subroutines contain programming instructions and comments.

• Specified shortcut keys, or the Run button in the Macro
dialog, can be used to run a macro.

• Recorded macro programming instructions can be edited in
the Visual Basic Editor to change the macro’s behavior.

• Excel’s default macro recording mode references cells by their
absolute position.

• �e Use Relative References button in the Code group
enables Excel’s alternative macro recording mode, which
references cells by their relative position.

• A workbook that contains macro code must be saved as an
Excel Macro-Enabled Workbook and “.xlsm” file extension.

• General-purpose macros can be saved in the Personal Macro
Workbook so they are available in other workbooks.

• Excel automatically disables macros in an Excel Macro-
Enabled Workbook until the user consents to trust them.

• A folder can be nominated as a trusted location where Excel
Macro-Enabled Workbooks can be placed and run without
security restrictions.

	toc_excel_vba365_web
	01_excel_vba365_web

